![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3028. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
nelir | ⊢ 𝐴 ∉ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
2 | df-nel 3028 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbir 221 | 1 ⊢ 𝐴 ∉ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2131 ∉ wnel 3027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-nel 3028 |
This theorem is referenced by: ru 3567 prneli 4339 snnexOLD 7124 ruv 8664 ruALT 8665 cardprc 8988 pnfnre 10265 mnfnre 10266 wrdlndm 13499 eirr 15124 sqrt2irr 15170 lcmfnnval 15531 lcmf0 15541 zringndrg 20032 topnex 20994 zfbas 21893 aaliou3 24297 finsumvtxdg2sstep 26647 clwwlkn0OLD 27149 xrge0iifcnv 30280 bj-0nel1 33238 bj-1nel0 33239 bj-0nelsngl 33257 fmtnoinf 41950 fmtno5nprm 41997 0nodd 42312 2nodd 42314 1neven 42434 2zrngnring 42454 |
Copyright terms: Public domain | W3C validator |