![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelfzo | Structured version Visualization version GIF version |
Description: An integer not being a member of a half-open finite set of integers. (Contributed by AV, 29-Apr-2020.) |
Ref | Expression |
---|---|
nelfzo | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∉ (𝑀..^𝑁) ↔ (𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3037 | . 2 ⊢ (𝐾 ∉ (𝑀..^𝑁) ↔ ¬ 𝐾 ∈ (𝑀..^𝑁)) | |
2 | ianor 510 | . . . 4 ⊢ (¬ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁) ↔ (¬ 𝑀 ≤ 𝐾 ∨ ¬ 𝐾 < 𝑁)) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁) ↔ (¬ 𝑀 ≤ 𝐾 ∨ ¬ 𝐾 < 𝑁))) |
4 | elfzo 12687 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
5 | 4 | notbid 307 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) ↔ ¬ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
6 | zre 11594 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
7 | zre 11594 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
8 | 6, 7 | anim12i 591 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ)) |
9 | 8 | 3adant3 1127 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ)) |
10 | ltnle 10330 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾)) |
12 | zre 11594 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
13 | 6, 12 | anim12ci 592 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ)) |
14 | 13 | 3adant2 1126 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ)) |
15 | lenlt 10329 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑁 ≤ 𝐾 ↔ ¬ 𝐾 < 𝑁)) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 𝐾 ↔ ¬ 𝐾 < 𝑁)) |
17 | 11, 16 | orbi12d 748 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾) ↔ (¬ 𝑀 ≤ 𝐾 ∨ ¬ 𝐾 < 𝑁))) |
18 | 3, 5, 17 | 3bitr4d 300 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾))) |
19 | 1, 18 | syl5bb 272 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∉ (𝑀..^𝑁) ↔ (𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2140 ∉ wnel 3036 class class class wbr 4805 (class class class)co 6815 ℝcr 10148 < clt 10287 ≤ cle 10288 ℤcz 11590 ..^cfzo 12680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-n0 11506 df-z 11591 df-uz 11901 df-fz 12541 df-fzo 12681 |
This theorem is referenced by: wrdsymb0 13546 |
Copyright terms: Public domain | W3C validator |