Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  neleqtrd Structured version   Visualization version   GIF version

Theorem neleqtrd 2860
 Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
neleqtrd.1 (𝜑 → ¬ 𝐶𝐴)
neleqtrd.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
neleqtrd (𝜑 → ¬ 𝐶𝐵)

Proof of Theorem neleqtrd
StepHypRef Expression
1 neleqtrd.1 . 2 (𝜑 → ¬ 𝐶𝐴)
2 neleqtrd.2 . . 3 (𝜑𝐴 = 𝐵)
32eleq2d 2825 . 2 (𝜑 → (𝐶𝐴𝐶𝐵))
41, 3mtbid 313 1 (𝜑 → ¬ 𝐶𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1632   ∈ wcel 2139 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1854  df-cleq 2753  df-clel 2756 This theorem is referenced by:  neleqtrrd  2861  smoord  7632  r1tskina  9816  ofccat  13929  mreexexlem2d  16527  opptgdim2  25857  dochnel  37202  stoweidlem26  40764  fourierdlem60  40904  fourierdlem61  40905  sge00  41114  sge0sn  41117  sge0split  41147  iundjiunlem  41197
 Copyright terms: Public domain W3C validator