![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neldif | Structured version Visualization version GIF version |
Description: Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994.) |
Ref | Expression |
---|---|
neldif | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ 𝐶)) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3726 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
2 | 1 | simplbi2 656 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐶 → 𝐴 ∈ (𝐵 ∖ 𝐶))) |
3 | 2 | con1d 139 | . 2 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐶)) |
4 | 3 | imp 444 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ 𝐶)) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 2140 ∖ cdif 3713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 df-dif 3719 |
This theorem is referenced by: peano5 7256 boxcutc 8120 etransc 41022 |
Copyright terms: Public domain | W3C validator |