MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiuni Structured version   Visualization version   GIF version

Theorem neiuni 21148
Description: The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
tpnei.1 𝑋 = 𝐽
Assertion
Ref Expression
neiuni ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 = ((nei‘𝐽)‘𝑆))

Proof of Theorem neiuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tpnei.1 . . . . 5 𝑋 = 𝐽
21tpnei 21147 . . . 4 (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))
32biimpa 502 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆))
4 elssuni 4619 . . 3 (𝑋 ∈ ((nei‘𝐽)‘𝑆) → 𝑋 ((nei‘𝐽)‘𝑆))
53, 4syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 ((nei‘𝐽)‘𝑆))
61neii1 21132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑥𝑋)
76ex 449 . . . . 5 (𝐽 ∈ Top → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥𝑋))
87adantr 472 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥𝑋))
98ralrimiv 3103 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)𝑥𝑋)
10 unissb 4621 . . 3 ( ((nei‘𝐽)‘𝑆) ⊆ 𝑋 ↔ ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)𝑥𝑋)
119, 10sylibr 224 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
125, 11eqssd 3761 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 = ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  wss 3715   cuni 4588  cfv 6049  Topctop 20920  neicnei 21123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-top 20921  df-nei 21124
This theorem is referenced by:  neifil  21905
  Copyright terms: Public domain W3C validator