![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version |
Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | nne 2827 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
3 | 1, 2 | mpbir 221 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 ≠ wne 2823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-cleq 2644 df-ne 2824 |
This theorem is referenced by: ssdifsn 4351 neldifsn 4354 ac5b 9338 1nuz2 11802 dprd2da 18487 dvlog 24442 legso 25539 hleqnid 25548 umgrnloop0 26049 usgrnloop0ALT 26142 nfrgr2v 27252 0ngrp 27493 signswch 30766 signstfvneq0 30777 linedegen 32375 prtlem400 34474 padd01 35415 padd02 35416 fiiuncl 39548 rmsupp0 42474 lcoc0 42536 |
Copyright terms: Public domain | W3C validator |