MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptopreu Structured version   Visualization version   GIF version

Theorem neiptopreu 21159
Description: If, to each element 𝑃 of a set 𝑋, we associate a set (𝑁𝑃) fulfilling the properties Vi, Vii, Viii and property Viv of [BourbakiTop1] p. I.2. , corresponding to ssnei 21136, innei 21151, elnei 21137 and neissex 21153, then there is a unique topology 𝑗 such that for any point 𝑝, (𝑁𝑝) is the set of neighborhoods of 𝑝. Proposition 2 of [BourbakiTop1] p. I.3. This can be used to build a topology from a set of neighborhoods. Note that the additional condition that 𝑋 is a neighborhood of all points was added. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
neiptop.0 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
neiptop.1 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
neiptop.2 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
neiptop.3 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
neiptop.4 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
neiptop.5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Assertion
Ref Expression
neiptopreu (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
Distinct variable groups:   𝑝,𝑎,𝑁   𝑋,𝑎,𝑏,𝑝   𝐽,𝑎,𝑝   𝑋,𝑝   𝜑,𝑝   𝑁,𝑏   𝑋,𝑏   𝜑,𝑎,𝑏,𝑞,𝑝   𝑁,𝑝,𝑞   𝑋,𝑞   𝜑,𝑞   𝑗,𝑎,𝑏,𝐽,𝑝   𝑗,𝑞,𝑁   𝑗,𝑋   𝜑,𝑗
Allowed substitution hint:   𝐽(𝑞)

Proof of Theorem neiptopreu
StepHypRef Expression
1 neiptop.o . . . . 5 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
2 neiptop.0 . . . . 5 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
3 neiptop.1 . . . . 5 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
4 neiptop.2 . . . . 5 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
5 neiptop.3 . . . . 5 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
6 neiptop.4 . . . . 5 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
7 neiptop.5 . . . . 5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
81, 2, 3, 4, 5, 6, 7neiptoptop 21157 . . . 4 (𝜑𝐽 ∈ Top)
9 eqid 2760 . . . . 5 𝐽 = 𝐽
109toptopon 20944 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
118, 10sylib 208 . . 3 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
121, 2, 3, 4, 5, 6, 7neiptopuni 21156 . . . 4 (𝜑𝑋 = 𝐽)
1312fveq2d 6357 . . 3 (𝜑 → (TopOn‘𝑋) = (TopOn‘ 𝐽))
1411, 13eleqtrrd 2842 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
151, 2, 3, 4, 5, 6, 7neiptopnei 21158 . 2 (𝜑𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})))
16 nfv 1992 . . . . . . . . . 10 𝑝(𝜑𝑗 ∈ (TopOn‘𝑋))
17 nfmpt1 4899 . . . . . . . . . . 11 𝑝(𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))
1817nfeq2 2918 . . . . . . . . . 10 𝑝 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))
1916, 18nfan 1977 . . . . . . . . 9 𝑝((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
20 nfv 1992 . . . . . . . . 9 𝑝 𝑏𝑋
2119, 20nfan 1977 . . . . . . . 8 𝑝(((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋)
22 simpllr 817 . . . . . . . . . . 11 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
23 simpr 479 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) → 𝑏𝑋)
2423sselda 3744 . . . . . . . . . . 11 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → 𝑝𝑋)
25 id 22 . . . . . . . . . . . 12 (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
26 fvexd 6365 . . . . . . . . . . . 12 ((𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝𝑋) → ((nei‘𝑗)‘{𝑝}) ∈ V)
2725, 26fvmpt2d 6456 . . . . . . . . . . 11 ((𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝𝑋) → (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2822, 24, 27syl2anc 696 . . . . . . . . . 10 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2928eqcomd 2766 . . . . . . . . 9 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → ((nei‘𝑗)‘{𝑝}) = (𝑁𝑝))
3029eleq2d 2825 . . . . . . . 8 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → (𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ 𝑏 ∈ (𝑁𝑝)))
3121, 30ralbida 3120 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) → (∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝)))
3231pm5.32da 676 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → ((𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝))))
33 simpllr 817 . . . . . . . . 9 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → 𝑗 ∈ (TopOn‘𝑋))
34 simpr 479 . . . . . . . . 9 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → 𝑏𝑗)
35 toponss 20953 . . . . . . . . 9 ((𝑗 ∈ (TopOn‘𝑋) ∧ 𝑏𝑗) → 𝑏𝑋)
3633, 34, 35syl2anc 696 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → 𝑏𝑋)
37 topontop 20940 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top)
3837ad2antlr 765 . . . . . . . . . 10 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 ∈ Top)
39 opnnei 21146 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑏𝑗 ↔ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
4038, 39syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗 ↔ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
4140biimpa 502 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))
4236, 41jca 555 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
4340biimpar 503 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) → 𝑏𝑗)
4443adantrl 754 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) → 𝑏𝑗)
4542, 44impbida 913 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))))
461neipeltop 21155 . . . . . . 7 (𝑏𝐽 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝)))
4746a1i 11 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝐽 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝))))
4832, 45, 473bitr4d 300 . . . . 5 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗𝑏𝐽))
4948eqrdv 2758 . . . 4 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 = 𝐽)
5049ex 449 . . 3 ((𝜑𝑗 ∈ (TopOn‘𝑋)) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽))
5150ralrimiva 3104 . 2 (𝜑 → ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽))
52 simpl 474 . . . . . . 7 ((𝑗 = 𝐽𝑝𝑋) → 𝑗 = 𝐽)
5352fveq2d 6357 . . . . . 6 ((𝑗 = 𝐽𝑝𝑋) → (nei‘𝑗) = (nei‘𝐽))
5453fveq1d 6355 . . . . 5 ((𝑗 = 𝐽𝑝𝑋) → ((nei‘𝑗)‘{𝑝}) = ((nei‘𝐽)‘{𝑝}))
5554mpteq2dva 4896 . . . 4 (𝑗 = 𝐽 → (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})))
5655eqeq2d 2770 . . 3 (𝑗 = 𝐽 → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝}))))
5756eqreu 3539 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})) ∧ ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
5814, 15, 51, 57syl3anc 1477 1 (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  ∃!wreu 3052  {crab 3054  Vcvv 3340  wss 3715  𝒫 cpw 4302  {csn 4321   cuni 4588  cmpt 4881  wf 6045  cfv 6049  ficfi 8483  Topctop 20920  TopOnctopon 20937  neicnei 21123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-fin 8127  df-fi 8484  df-top 20921  df-topon 20938  df-ntr 21046  df-nei 21124
This theorem is referenced by:  ustuqtop  22271
  Copyright terms: Public domain W3C validator