MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj2 Structured version   Visualization version   GIF version

Theorem neindisj2 20975
Description: A point 𝑃 belongs to the closure of a set 𝑆 iff every neighborhood of 𝑃 meets 𝑆. (Contributed by FL, 15-Sep-2013.)
Hypothesis
Ref Expression
tpnei.1 𝑋 = 𝐽
Assertion
Ref Expression
neindisj2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
Distinct variable groups:   𝑛,𝐽   𝑃,𝑛   𝑆,𝑛   𝑛,𝑋

Proof of Theorem neindisj2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tpnei.1 . . 3 𝑋 = 𝐽
21elcls 20925 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
31isneip 20957 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑛𝑋 ∧ ∃𝑥𝐽 (𝑃𝑥𝑥𝑛))))
4 r19.29r 3102 . . . . . . . . . . 11 ((∃𝑥𝐽 (𝑃𝑥𝑥𝑛) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → ∃𝑥𝐽 ((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5 pm3.35 610 . . . . . . . . . . . . . . . 16 ((𝑃𝑥 ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑥𝑆) ≠ ∅)
6 ssrin 3871 . . . . . . . . . . . . . . . . . 18 (𝑥𝑛 → (𝑥𝑆) ⊆ (𝑛𝑆))
7 sseq2 3660 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑆) = ∅ → ((𝑥𝑆) ⊆ (𝑛𝑆) ↔ (𝑥𝑆) ⊆ ∅))
8 ss0 4007 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑆) ⊆ ∅ → (𝑥𝑆) = ∅)
97, 8syl6bi 243 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑆) = ∅ → ((𝑥𝑆) ⊆ (𝑛𝑆) → (𝑥𝑆) = ∅))
106, 9syl5com 31 . . . . . . . . . . . . . . . . 17 (𝑥𝑛 → ((𝑛𝑆) = ∅ → (𝑥𝑆) = ∅))
1110necon3d 2844 . . . . . . . . . . . . . . . 16 (𝑥𝑛 → ((𝑥𝑆) ≠ ∅ → (𝑛𝑆) ≠ ∅))
125, 11syl5com 31 . . . . . . . . . . . . . . 15 ((𝑃𝑥 ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑥𝑛 → (𝑛𝑆) ≠ ∅))
1312ex 449 . . . . . . . . . . . . . 14 (𝑃𝑥 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑥𝑛 → (𝑛𝑆) ≠ ∅)))
1413com23 86 . . . . . . . . . . . . 13 (𝑃𝑥 → (𝑥𝑛 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
1514imp31 447 . . . . . . . . . . . 12 (((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
1615rexlimivw 3058 . . . . . . . . . . 11 (∃𝑥𝐽 ((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
174, 16syl 17 . . . . . . . . . 10 ((∃𝑥𝐽 (𝑃𝑥𝑥𝑛) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
1817ex 449 . . . . . . . . 9 (∃𝑥𝐽 (𝑃𝑥𝑥𝑛) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅))
1918adantl 481 . . . . . . . 8 ((𝑛𝑋 ∧ ∃𝑥𝐽 (𝑃𝑥𝑥𝑛)) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅))
203, 19syl6bi 243 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
21203adant2 1100 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
2221com23 86 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛𝑆) ≠ ∅)))
2322imp 444 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛𝑆) ≠ ∅))
2423ralrimiv 2994 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅)
25 opnneip 20971 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
26 ineq1 3840 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝑛𝑆) = (𝑥𝑆))
2726neeq1d 2882 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → ((𝑛𝑆) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
2827rspccva 3339 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑥𝑆) ≠ ∅)
29 idd 24 . . . . . . . . . . . . . . 15 ((𝑃𝑋 ∧ (𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) ∧ 𝑆𝑋) → ((𝑥𝑆) ≠ ∅ → (𝑥𝑆) ≠ ∅))
30293exp 1283 . . . . . . . . . . . . . 14 (𝑃𝑋 → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → ((𝑥𝑆) ≠ ∅ → (𝑥𝑆) ≠ ∅))))
3130com14 96 . . . . . . . . . . . . 13 ((𝑥𝑆) ≠ ∅ → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
3228, 31syl 17 . . . . . . . . . . . 12 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
3332ex 449 . . . . . . . . . . 11 (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3433com3l 89 . . . . . . . . . 10 (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3525, 34mpcom 38 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
36353expia 1286 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑃𝑥 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3736com25 99 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))))
3837ex 449 . . . . . 6 (𝐽 ∈ Top → (𝑥𝐽 → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))))
3938com25 99 . . . . 5 (𝐽 ∈ Top → (𝑆𝑋 → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑥𝐽 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))))
40393imp1 1302 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅) → (𝑥𝐽 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
4140ralrimiv 2994 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
4224, 41impbida 895 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
432, 42bitrd 268 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  cin 3606  wss 3607  c0 3948  {csn 4210   cuni 4468  cfv 5926  Topctop 20746  clsccl 20870  neicnei 20949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-top 20747  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950
This theorem is referenced by:  islp2  20997  trnei  21743  flimclsi  21829
  Copyright terms: Public domain W3C validator