MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj Structured version   Visualization version   GIF version

Theorem neindisj 21119
Description: Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
neindisj (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁𝑆) ≠ ∅)

Proof of Theorem neindisj
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . . 8 𝑋 = 𝐽
21clsss3 21061 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
32sseld 3739 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃𝑋))
43impr 650 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → 𝑃𝑋)
51isneip 21107 . . . . 5 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
64, 5syldan 488 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
7 3anass 1081 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ↔ (𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))))
81clsndisj 21077 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔𝐽𝑃𝑔)) → (𝑔𝑆) ≠ ∅)
97, 8sylanbr 491 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ (𝑔𝐽𝑃𝑔)) → (𝑔𝑆) ≠ ∅)
109anassrs 683 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑔𝐽) ∧ 𝑃𝑔) → (𝑔𝑆) ≠ ∅)
1110adantllr 757 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ 𝑃𝑔) → (𝑔𝑆) ≠ ∅)
1211adantrr 755 . . . . . . . 8 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → (𝑔𝑆) ≠ ∅)
13 ssdisj 4166 . . . . . . . . . . 11 ((𝑔𝑁 ∧ (𝑁𝑆) = ∅) → (𝑔𝑆) = ∅)
1413ex 449 . . . . . . . . . 10 (𝑔𝑁 → ((𝑁𝑆) = ∅ → (𝑔𝑆) = ∅))
1514necon3d 2949 . . . . . . . . 9 (𝑔𝑁 → ((𝑔𝑆) ≠ ∅ → (𝑁𝑆) ≠ ∅))
1615ad2antll 767 . . . . . . . 8 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → ((𝑔𝑆) ≠ ∅ → (𝑁𝑆) ≠ ∅))
1712, 16mpd 15 . . . . . . 7 (((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) ∧ (𝑃𝑔𝑔𝑁)) → (𝑁𝑆) ≠ ∅)
1817ex 449 . . . . . 6 ((((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) ∧ 𝑔𝐽) → ((𝑃𝑔𝑔𝑁) → (𝑁𝑆) ≠ ∅))
1918rexlimdva 3165 . . . . 5 (((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) ∧ 𝑁𝑋) → (∃𝑔𝐽 (𝑃𝑔𝑔𝑁) → (𝑁𝑆) ≠ ∅))
2019expimpd 630 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) → (𝑁𝑆) ≠ ∅))
216, 20sylbid 230 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑆) ≠ ∅))
2221exp32 632 . 2 (𝐽 ∈ Top → (𝑆𝑋 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑆) ≠ ∅))))
2322imp43 622 1 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1628  wcel 2135  wne 2928  wrex 3047  cin 3710  wss 3711  c0 4054  {csn 4317   cuni 4584  cfv 6045  Topctop 20896  clsccl 21020  neicnei 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-reu 3053  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-iin 4671  df-br 4801  df-opab 4861  df-mpt 4878  df-id 5170  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-top 20897  df-cld 21021  df-ntr 21022  df-cls 21023  df-nei 21100
This theorem is referenced by:  clslp  21150  flimclslem  21985  utop3cls  22252
  Copyright terms: Public domain W3C validator