![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neii | Structured version Visualization version GIF version |
Description: Inference associated with df-ne 2944. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neii.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
neii | ⊢ ¬ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | df-ne 2944 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ ¬ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1631 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2944 |
This theorem is referenced by: nesymi 3000 nemtbir 3038 snsssn 4505 2dom 8182 map2xp 8286 updjudhcoinrg 8959 pm54.43lem 9025 canthp1lem2 9677 ine0 10667 inelr 11212 xrltnr 12158 pnfnlt 12167 prprrab 13457 wrdlen2i 13896 3lcm2e6woprm 15536 6lcm4e12 15537 m1dvdsndvds 15710 xpsfrnel2 16433 pmatcollpw3fi1lem1 20811 sinhalfpilem 24436 coseq1 24495 2lgslem3 25350 2lgslem4 25352 axlowdimlem13 26055 axlowdim1 26060 umgredgnlp 26264 wwlksnext 27037 norm1exi 28447 largei 29466 ind1a 30421 ballotlemii 30905 sgnnbi 30947 sgnpbi 30948 dfrdg2 32037 sltval2 32146 nosgnn0 32148 sltintdifex 32151 sltres 32152 sltsolem1 32163 nolt02o 32182 dfrdg4 32395 bj-1nel0 33272 bj-pr21val 33332 finxpreclem2 33564 epnsymrel 34650 0dioph 37868 clsk1indlem1 38869 dirkercncflem2 40838 fourierdlem60 40900 fourierdlem61 40901 fun2dmnopgexmpl 41826 |
Copyright terms: Public domain | W3C validator |