Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neificl Structured version   Visualization version   GIF version

Theorem neificl 33862
Description: Neighborhoods are closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Nov-2013.)
Assertion
Ref Expression
neificl (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem neificl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 811 . . 3 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ Fin)
2 innei 21131 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
323expib 1117 . . . . . . 7 (𝐽 ∈ Top → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
43ralrimivv 3108 . . . . . 6 (𝐽 ∈ Top → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
5 fiint 8402 . . . . . 6 (∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
64, 5sylib 208 . . . . 5 (𝐽 ∈ Top → ∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
7 sseq1 3767 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ⊆ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)))
8 neeq1 2994 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ≠ ∅ ↔ 𝑁 ≠ ∅))
9 eleq1 2827 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ∈ Fin ↔ 𝑁 ∈ Fin))
107, 8, 93anbi123d 1548 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin)))
11 3ancomb 1086 . . . . . . . . 9 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
12 3anass 1081 . . . . . . . . 9 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1311, 12bitri 264 . . . . . . . 8 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1410, 13syl6bb 276 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))))
15 inteq 4630 . . . . . . . 8 (𝑥 = 𝑁 𝑥 = 𝑁)
1615eleq1d 2824 . . . . . . 7 (𝑥 = 𝑁 → ( 𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
1714, 16imbi12d 333 . . . . . 6 (𝑥 = 𝑁 → (((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) ↔ ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
1817spcgv 3433 . . . . 5 (𝑁 ∈ Fin → (∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
196, 18syl5 34 . . . 4 (𝑁 ∈ Fin → (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
2019com3l 89 . . 3 (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → (𝑁 ∈ Fin → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
211, 20mpdi 45 . 2 (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
2221impl 651 1 (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wal 1630   = wceq 1632  wcel 2139  wne 2932  wral 3050  cin 3714  wss 3715  c0 4058   cint 4627  cfv 6049  Fincfn 8121  Topctop 20900  neicnei 21103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-fin 8125  df-top 20901  df-nei 21104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator