![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgnvo | Structured version Visualization version GIF version |
Description: If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgnvo | ⊢ (𝜑 → ◡𝐻 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
2 | 1 | cnveqi 5404 | . . . 4 ⊢ ◡𝐻 = ◡(𝐹 ∘ (𝐷 ∘ 𝐺)) |
3 | cnvco 5415 | . . . 4 ⊢ ◡(𝐹 ∘ (𝐷 ∘ 𝐺)) = (◡(𝐷 ∘ 𝐺) ∘ ◡𝐹) | |
4 | cnvco 5415 | . . . . 5 ⊢ ◡(𝐷 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐷) | |
5 | 4 | coeq1i 5389 | . . . 4 ⊢ (◡(𝐷 ∘ 𝐺) ∘ ◡𝐹) = ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) |
6 | 2, 3, 5 | 3eqtri 2750 | . . 3 ⊢ ◡𝐻 = ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) |
7 | neicvg.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
8 | neicvg.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
9 | neicvg.r | . . . . . . 7 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
10 | 8, 1, 9 | neicvgbex 38829 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | pwexg 4955 | . . . . . . 7 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
13 | neicvg.g | . . . . . 6 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
14 | neicvg.f | . . . . . 6 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
15 | 7, 10, 12, 13, 14 | fsovcnvd 38727 | . . . . 5 ⊢ (𝜑 → ◡𝐺 = 𝐹) |
16 | neicvg.p | . . . . . 6 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
17 | 16, 8, 10 | dssmapnvod 38733 | . . . . 5 ⊢ (𝜑 → ◡𝐷 = 𝐷) |
18 | 15, 17 | coeq12d 5394 | . . . 4 ⊢ (𝜑 → (◡𝐺 ∘ ◡𝐷) = (𝐹 ∘ 𝐷)) |
19 | 7, 12, 10, 14, 13 | fsovcnvd 38727 | . . . 4 ⊢ (𝜑 → ◡𝐹 = 𝐺) |
20 | 18, 19 | coeq12d 5394 | . . 3 ⊢ (𝜑 → ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) = ((𝐹 ∘ 𝐷) ∘ 𝐺)) |
21 | 6, 20 | syl5eq 2770 | . 2 ⊢ (𝜑 → ◡𝐻 = ((𝐹 ∘ 𝐷) ∘ 𝐺)) |
22 | coass 5767 | . . 3 ⊢ ((𝐹 ∘ 𝐷) ∘ 𝐺) = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
23 | 22, 1 | eqtr4i 2749 | . 2 ⊢ ((𝐹 ∘ 𝐷) ∘ 𝐺) = 𝐻 |
24 | 21, 23 | syl6eq 2774 | 1 ⊢ (𝜑 → ◡𝐻 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 {crab 3018 Vcvv 3304 ∖ cdif 3677 𝒫 cpw 4266 class class class wbr 4760 ↦ cmpt 4837 ◡ccnv 5217 ∘ ccom 5222 ‘cfv 6001 (class class class)co 6765 ↦ cmpt2 6767 ↑𝑚 cmap 7974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-1st 7285 df-2nd 7286 df-map 7976 |
This theorem is referenced by: neicvgnvor 38833 |
Copyright terms: Public domain | W3C validator |