![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgmex | Structured version Visualization version GIF version |
Description: If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgmex | ⊢ (𝜑 → 𝑀 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.o | . 2 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | neicvg.f | . 2 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | neicvg.d | . . . . 5 ⊢ 𝐷 = (𝑃‘𝐵) | |
4 | neicvg.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
5 | neicvg.r | . . . . 5 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
6 | 3, 4, 5 | neicvgbex 38930 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
7 | pwexg 4999 | . . . . . . . 8 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
8 | 7 | adantl 473 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
9 | simpr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
10 | 1, 8, 9, 2 | fsovf1od 38830 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
11 | f1ofn 6300 | . . . . . 6 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → 𝐹 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
13 | neicvg.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
14 | 13, 3, 9 | dssmapf1od 38835 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
15 | f1of 6299 | . . . . . 6 ⊢ (𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵) → 𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)⟶(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)⟶(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
17 | neicvg.g | . . . . . 6 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
18 | 1, 9, 8, 17 | fsovfd 38826 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐺:(𝒫 𝒫 𝐵 ↑𝑚 𝐵)⟶(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
19 | 4 | breqi 4810 | . . . . . . 7 ⊢ (𝑁𝐻𝑀 ↔ 𝑁(𝐹 ∘ (𝐷 ∘ 𝐺))𝑀) |
20 | 5, 19 | sylib 208 | . . . . . 6 ⊢ (𝜑 → 𝑁(𝐹 ∘ (𝐷 ∘ 𝐺))𝑀) |
21 | 20 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝑁(𝐹 ∘ (𝐷 ∘ 𝐺))𝑀) |
22 | 12, 16, 18, 21 | brcofffn 38849 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝑁𝐺(𝐺‘𝑁) ∧ (𝐺‘𝑁)𝐷(𝐷‘(𝐺‘𝑁)) ∧ (𝐷‘(𝐺‘𝑁))𝐹𝑀)) |
23 | 6, 22 | mpdan 705 | . . 3 ⊢ (𝜑 → (𝑁𝐺(𝐺‘𝑁) ∧ (𝐺‘𝑁)𝐷(𝐷‘(𝐺‘𝑁)) ∧ (𝐷‘(𝐺‘𝑁))𝐹𝑀)) |
24 | 23 | simp3d 1139 | . 2 ⊢ (𝜑 → (𝐷‘(𝐺‘𝑁))𝐹𝑀) |
25 | 1, 2, 24 | ntrneinex 38895 | 1 ⊢ (𝜑 → 𝑀 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 {crab 3054 Vcvv 3340 ∖ cdif 3712 𝒫 cpw 4302 class class class wbr 4804 ↦ cmpt 4881 ∘ ccom 5270 Fn wfn 6044 ⟶wf 6045 –1-1-onto→wf1o 6048 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 ↑𝑚 cmap 8025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-map 8027 |
This theorem is referenced by: neicvgnex 38936 |
Copyright terms: Public domain | W3C validator |