![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgf1o | Structured version Visualization version GIF version |
Description: If neighborhood and convergent functions are related by operator 𝐻, it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgf1o | ⊢ (𝜑 → 𝐻:(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | neicvg.d | . . . . . 6 ⊢ 𝐷 = (𝑃‘𝐵) | |
3 | neicvg.h | . . . . . 6 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
4 | neicvg.r | . . . . . 6 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
5 | 2, 3, 4 | neicvgbex 38930 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
6 | pwexg 4999 | . . . . 5 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
8 | neicvg.f | . . . 4 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
9 | 1, 7, 5, 8 | fsovf1od 38830 | . . 3 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
10 | neicvg.p | . . . . 5 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
11 | 10, 2, 5 | dssmapf1od 38835 | . . . 4 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
12 | neicvg.g | . . . . 5 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
13 | 1, 5, 7, 12 | fsovf1od 38830 | . . . 4 ⊢ (𝜑 → 𝐺:(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
14 | f1oco 6321 | . . . 4 ⊢ ((𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵) ∧ 𝐺:(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) → (𝐷 ∘ 𝐺):(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) | |
15 | 11, 13, 14 | syl2anc 696 | . . 3 ⊢ (𝜑 → (𝐷 ∘ 𝐺):(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
16 | f1oco 6321 | . . 3 ⊢ ((𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ∧ (𝐷 ∘ 𝐺):(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) → (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) | |
17 | 9, 15, 16 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
18 | f1oeq1 6289 | . . 3 ⊢ (𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) → (𝐻:(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ↔ (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵))) | |
19 | 3, 18 | ax-mp 5 | . 2 ⊢ (𝐻:(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ↔ (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
20 | 17, 19 | sylibr 224 | 1 ⊢ (𝜑 → 𝐻:(𝒫 𝒫 𝐵 ↑𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 {crab 3054 Vcvv 3340 ∖ cdif 3712 𝒫 cpw 4302 class class class wbr 4804 ↦ cmpt 4881 ∘ ccom 5270 –1-1-onto→wf1o 6048 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 ↑𝑚 cmap 8025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-map 8027 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |