![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgel2 | Structured version Visualization version GIF version |
Description: The complement of a subset being an element of a neighborhood at a point is equivalent to that subset not being a element of the convergent at that point. (Contributed by RP, 12-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
neicvgel.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
neicvgel.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
neicvgel2 | ⊢ (𝜑 → ((𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋) ↔ ¬ 𝑆 ∈ (𝑀‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | neicvg.p | . . 3 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
3 | neicvg.d | . . 3 ⊢ 𝐷 = (𝑃‘𝐵) | |
4 | neicvg.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
5 | neicvg.g | . . 3 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
6 | neicvg.h | . . 3 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
7 | neicvg.r | . . 3 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
8 | neicvgel.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 3, 6, 7 | neicvgrcomplex 38930 | . . 3 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | neicvgel1 38936 | . 2 ⊢ (𝜑 → ((𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋) ↔ ¬ (𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑀‘𝑋))) |
11 | neicvgel.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
12 | 11 | elpwid 4307 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
13 | dfss4 4005 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑆)) = 𝑆) | |
14 | 12, 13 | sylib 208 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ (𝐵 ∖ 𝑆)) = 𝑆) |
15 | 14 | eleq1d 2834 | . . 3 ⊢ (𝜑 → ((𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑀‘𝑋) ↔ 𝑆 ∈ (𝑀‘𝑋))) |
16 | 15 | notbid 307 | . 2 ⊢ (𝜑 → (¬ (𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑀‘𝑋) ↔ ¬ 𝑆 ∈ (𝑀‘𝑋))) |
17 | 10, 16 | bitrd 268 | 1 ⊢ (𝜑 → ((𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋) ↔ ¬ 𝑆 ∈ (𝑀‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1630 ∈ wcel 2144 {crab 3064 Vcvv 3349 ∖ cdif 3718 ⊆ wss 3721 𝒫 cpw 4295 class class class wbr 4784 ↦ cmpt 4861 ∘ ccom 5253 ‘cfv 6031 (class class class)co 6792 ↦ cmpt2 6794 ↑𝑚 cmap 8008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-map 8010 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |