![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negmod | Structured version Visualization version GIF version |
Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by AV, 5-Jul-2020.) |
Ref | Expression |
---|---|
negmod | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12043 | . . . . 5 ⊢ (𝑁 ∈ ℝ+ → 𝑁 ∈ ℂ) | |
2 | recn 10227 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | negsub 10530 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 + -𝐴) = (𝑁 − 𝐴)) | |
4 | 1, 2, 3 | syl2anr 576 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑁 + -𝐴) = (𝑁 − 𝐴)) |
5 | 4 | eqcomd 2776 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑁 − 𝐴) = (𝑁 + -𝐴)) |
6 | 5 | oveq1d 6807 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑁 − 𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁)) |
7 | 1 | mulid2d 10259 | . . . . 5 ⊢ (𝑁 ∈ ℝ+ → (1 · 𝑁) = 𝑁) |
8 | 7 | adantl 467 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (1 · 𝑁) = 𝑁) |
9 | 8 | oveq1d 6807 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((1 · 𝑁) + -𝐴) = (𝑁 + -𝐴)) |
10 | 9 | oveq1d 6807 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁)) |
11 | 1cnd 10257 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 1 ∈ ℂ) | |
12 | mulcl 10221 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 · 𝑁) ∈ ℂ) | |
13 | 11, 1, 12 | syl2an 575 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (1 · 𝑁) ∈ ℂ) |
14 | renegcl 10545 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
15 | 14 | recnd 10269 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℂ) |
16 | 15 | adantr 466 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → -𝐴 ∈ ℂ) |
17 | 13, 16 | addcomd 10439 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((1 · 𝑁) + -𝐴) = (-𝐴 + (1 · 𝑁))) |
18 | 17 | oveq1d 6807 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((-𝐴 + (1 · 𝑁)) mod 𝑁)) |
19 | 14 | adantr 466 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → -𝐴 ∈ ℝ) |
20 | simpr 471 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 𝑁 ∈ ℝ+) | |
21 | 1zzd 11609 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 1 ∈ ℤ) | |
22 | modcyc 12912 | . . . 4 ⊢ ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁)) | |
23 | 19, 20, 21, 22 | syl3anc 1475 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁)) |
24 | 18, 23 | eqtrd 2804 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = (-𝐴 mod 𝑁)) |
25 | 6, 10, 24 | 3eqtr2rd 2811 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 (class class class)co 6792 ℂcc 10135 ℝcr 10136 1c1 10138 + caddc 10140 · cmul 10142 − cmin 10467 -cneg 10468 ℤcz 11578 ℝ+crp 12034 mod cmo 12875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-fl 12800 df-mod 12876 |
This theorem is referenced by: m1modnnsub1 12923 gausslemma2dlem5a 25315 |
Copyright terms: Public domain | W3C validator |