MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negiso Structured version   Visualization version   GIF version

Theorem negiso 10988
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
negiso.1 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
Assertion
Ref Expression
negiso (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)

Proof of Theorem negiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negiso.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
2 simpr 477 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
32renegcld 10442 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ) → -𝑥 ∈ ℝ)
4 simpr 477 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
54renegcld 10442 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ)
6 recn 10011 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
7 recn 10011 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
8 negcon2 10319 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
96, 7, 8syl2an 494 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
109adantl 482 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 = -𝑦𝑦 = -𝑥))
111, 3, 5, 10f1ocnv2d 6871 . . . . 5 (⊤ → (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)))
1211trud 1491 . . . 4 (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦))
1312simpli 474 . . 3 𝐹:ℝ–1-1-onto→ℝ
14 ltneg 10513 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑦 < -𝑧))
15 negex 10264 . . . . . . 7 -𝑧 ∈ V
16 negex 10264 . . . . . . 7 -𝑦 ∈ V
1715, 16brcnv 5294 . . . . . 6 (-𝑧 < -𝑦 ↔ -𝑦 < -𝑧)
1814, 17syl6bbr 278 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑧 < -𝑦))
19 negeq 10258 . . . . . . 7 (𝑥 = 𝑧 → -𝑥 = -𝑧)
2019, 1, 15fvmpt 6269 . . . . . 6 (𝑧 ∈ ℝ → (𝐹𝑧) = -𝑧)
21 negeq 10258 . . . . . . 7 (𝑥 = 𝑦 → -𝑥 = -𝑦)
2221, 1, 16fvmpt 6269 . . . . . 6 (𝑦 ∈ ℝ → (𝐹𝑦) = -𝑦)
2320, 22breqan12d 4660 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑧) < (𝐹𝑦) ↔ -𝑧 < -𝑦))
2418, 23bitr4d 271 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦)))
2524rgen2a 2974 . . 3 𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))
26 df-isom 5885 . . 3 (𝐹 Isom < , < (ℝ, ℝ) ↔ (𝐹:ℝ–1-1-onto→ℝ ∧ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))))
2713, 25, 26mpbir2an 954 . 2 𝐹 Isom < , < (ℝ, ℝ)
28 negeq 10258 . . . 4 (𝑦 = 𝑥 → -𝑦 = -𝑥)
2928cbvmptv 4741 . . 3 (𝑦 ∈ ℝ ↦ -𝑦) = (𝑥 ∈ ℝ ↦ -𝑥)
3012simpri 478 . . 3 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)
3129, 30, 13eqtr4i 2652 . 2 𝐹 = 𝐹
3227, 31pm3.2i 471 1 (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1481  wtru 1482  wcel 1988  wral 2909   class class class wbr 4644  cmpt 4720  ccnv 5103  1-1-ontowf1o 5875  cfv 5876   Isom wiso 5877  cc 9919  cr 9920   < clt 10059  -cneg 10252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-po 5025  df-so 5026  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254
This theorem is referenced by:  infrenegsup  10991
  Copyright terms: Public domain W3C validator