![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negicn | Structured version Visualization version GIF version |
Description: -i is a complex number. (Contributed by David A. Wheeler, 7-Dec-2018.) |
Ref | Expression |
---|---|
negicn | ⊢ -i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 10196 | . 2 ⊢ i ∈ ℂ | |
2 | negcl 10482 | . 2 ⊢ (i ∈ ℂ → -i ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -i ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2144 ℂcc 10135 ici 10139 -cneg 10468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-ltxr 10280 df-sub 10469 df-neg 10470 |
This theorem is referenced by: irec 13170 imcl 14058 absimle 14256 recan 14283 sinf 15059 cosf 15060 tanval2 15068 tanval3 15069 efi4p 15072 sinneg 15081 cosneg 15082 efival 15087 sinhval 15089 coshval 15090 sinadd 15099 cosadd 15100 cphipval2 23258 dvsincos 23963 sincn 24417 coscn 24418 sinperlem 24452 pige3 24489 sineq0 24493 tanregt0 24505 asinlem3a 24817 asinf 24819 asinneg 24833 efiasin 24835 sinasin 24836 asinsinlem 24838 asinsin 24839 asin1 24841 2efiatan 24865 dvatan 24882 atantayl 24884 nvpi 27856 ipval2 27896 4ipval2 27897 ipidsq 27899 dipcj 27903 dip0r 27906 ipasslem10 28028 polid2i 28348 dvasin 33821 areacirclem4 33828 sineq0ALT 39689 |
Copyright terms: Public domain | W3C validator |