![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version |
Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
Ref | Expression |
---|---|
negex | ⊢ -𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 10307 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | 1 | ovexi 6719 | 1 ⊢ -𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 Vcvv 3231 0cc0 9974 − cmin 10304 -cneg 10305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-sn 4211 df-pr 4213 df-uni 4469 df-iota 5889 df-fv 5934 df-ov 6693 df-neg 10307 |
This theorem is referenced by: negiso 11041 infrenegsup 11044 xnegex 12077 ceilval 12679 monoord2 12872 m1expcl2 12922 sgnval 13872 infcvgaux1i 14633 infcvgaux2i 14634 cnmsgnsubg 19971 evth2 22806 ivth2 23270 mbfinf 23477 mbfi1flimlem 23534 i1fibl 23619 ditgex 23661 dvrec 23763 dvmptsub 23775 dvexp3 23786 rolle 23798 dvlipcn 23802 dvivth 23818 lhop2 23823 dvfsumge 23830 ftc2 23852 plyremlem 24104 advlogexp 24446 logtayl 24451 logccv 24454 dvatan 24707 amgmlem 24761 emcllem7 24773 basellem9 24860 axlowdimlem7 25873 axlowdimlem8 25874 axlowdimlem9 25875 axlowdimlem13 25879 sgnsval 29856 sgnsf 29857 xrge0iifcv 30108 xrge0iifiso 30109 xrge0iifhom 30111 sgncl 30728 dvtan 33590 ftc1anclem5 33619 ftc1anclem6 33620 ftc2nc 33624 areacirclem1 33630 monotoddzzfi 37824 monotoddzz 37825 oddcomabszz 37826 rngunsnply 38060 infnsuprnmpt 39779 liminfltlem 40354 dvcosax 40459 itgsin0pilem1 40483 fourierdlem41 40683 fourierdlem48 40689 fourierdlem102 40743 fourierdlem114 40755 fourierswlem 40765 hoicvr 41083 hoicvrrex 41091 smfliminflem 41357 zlmodzxzldeplem3 42616 amgmwlem 42876 |
Copyright terms: Public domain | W3C validator |