![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > negcncfg | Structured version Visualization version GIF version |
Description: The opposite of a continuous function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
negcncfg.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→ℂ)) |
Ref | Expression |
---|---|
negcncfg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 10470 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 = (0 − 𝐵)) |
3 | 2 | mpteq2dva 4876 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) = (𝑥 ∈ 𝐴 ↦ (0 − 𝐵))) |
4 | eqid 2770 | . . . 4 ⊢ (𝑥 ∈ ℂ ↦ 0) = (𝑥 ∈ ℂ ↦ 0) | |
5 | 0cn 10233 | . . . . 5 ⊢ 0 ∈ ℂ | |
6 | ssid 3771 | . . . . . . 7 ⊢ ℂ ⊆ ℂ | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (0 ∈ ℂ → ℂ ⊆ ℂ) |
8 | id 22 | . . . . . 6 ⊢ (0 ∈ ℂ → 0 ∈ ℂ) | |
9 | 7, 8, 7 | constcncfg 40596 | . . . . 5 ⊢ (0 ∈ ℂ → (𝑥 ∈ ℂ ↦ 0) ∈ (ℂ–cn→ℂ)) |
10 | 5, 9 | mp1i 13 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 0) ∈ (ℂ–cn→ℂ)) |
11 | negcncfg.1 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→ℂ)) | |
12 | cncfrss 22913 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→ℂ) → 𝐴 ⊆ ℂ) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
14 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → ℂ ⊆ ℂ) |
15 | 5 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ ℂ) |
16 | 4, 10, 13, 14, 15 | cncfmptssg 40595 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0) ∈ (𝐴–cn→ℂ)) |
17 | 16, 11 | subcncf 40594 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (0 − 𝐵)) ∈ (𝐴–cn→ℂ)) |
18 | 3, 17 | eqeltrd 2849 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ⊆ wss 3721 ↦ cmpt 4861 (class class class)co 6792 ℂcc 10135 0cc0 10137 − cmin 10467 -cneg 10468 –cn→ccncf 22898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-icc 12386 df-fz 12533 df-fzo 12673 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-mulg 17748 df-cntz 17956 df-cmn 18401 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-cnfld 19961 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-cn 21251 df-cnp 21252 df-tx 21585 df-hmeo 21778 df-xms 22344 df-ms 22345 df-tms 22346 df-cncf 22900 |
This theorem is referenced by: itgsincmulx 40701 fourierdlem39 40874 fourierdlem73 40907 etransclem46 41008 |
Copyright terms: Public domain | W3C validator |