![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq2d 2781 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
3 | 2 | necon3bid 2987 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-ex 1853 df-cleq 2764 df-ne 2944 |
This theorem is referenced by: neeq2 3006 neeqtrd 3012 prneprprc 4526 fndifnfp 6586 f12dfv 6672 f13dfv 6673 infpssrlem4 9330 sqrt2irr 15185 dsmmval 20295 dsmmbas2 20298 frlmbas 20316 dfconn2 21443 alexsublem 22068 uc1pval 24119 mon1pval 24121 dchrsum2 25214 isinag 25950 uhgrwkspthlem2 26885 usgr2wlkneq 26887 usgr2trlspth 26892 lfgrn1cycl 26933 uspgrn2crct 26936 2pthdlem1 27077 3pthdlem1 27344 numclwwlk2lem1 27567 numclwwlk2lem1OLD 27574 eigorth 29037 eighmorth 29163 wlimeq12 32101 limsucncmpi 32781 poimirlem25 33767 poimirlem26 33768 pridlval 34164 maxidlval 34170 lshpset 34787 lduallkr3 34971 isatl 35108 cdlemk42 36750 stoweidlem43 40777 nnfoctbdjlem 41189 |
Copyright terms: Public domain | W3C validator |