![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq12i | Structured version Visualization version GIF version |
Description: Inference for inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
neeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
neeq12i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | neeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
3 | 1, 2 | eqeq12i 2774 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
4 | 3 | necon3bii 2984 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ≠ wne 2932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-cleq 2753 df-ne 2933 |
This theorem is referenced by: 3netr3g 3010 3netr4g 3011 oppchomfval 16575 oppcbas 16579 rescbas 16690 rescco 16693 rescabs 16694 odubas 17334 oppglem 17980 mgplem 18694 mgpress 18700 opprlem 18828 sralem 19379 srasca 19383 sravsca 19384 opsrbaslem 19679 opsrbaslemOLD 19680 zlmsca 20071 znbaslem 20088 znbaslemOLD 20089 thlbas 20242 thlle 20243 matsca 20423 tuslem 22272 setsmsbas 22481 setsmsds 22482 tngds 22653 ttgval 25954 ttglem 25955 cchhllem 25966 axlowdimlem6 26026 zlmds 30317 zlmtset 30318 nosepne 32137 hlhilslem 37732 zlmodzxzldeplem 42797 |
Copyright terms: Public domain | W3C validator |