![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 138 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon1bd 2961 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1631 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2944 |
This theorem is referenced by: necon1d 2965 fisseneq 8331 f1finf1o 8347 dfac5 9155 isf32lem9 9389 fpwwe2 9671 qextlt 12239 qextle 12240 xsubge0 12296 hashf1 13443 climuni 14491 rpnnen2lem12 15160 fzo0dvdseq 15254 4sqlem11 15866 haust1 21377 deg1lt0 24071 ply1divmo 24115 ig1peu 24151 dgrlt 24242 quotcan 24284 fta 25027 atcv0eq 29578 erdszelem9 31519 poimirlem23 33765 poimir 33775 lshpdisj 34796 lsatcv0eq 34856 exatleN 35213 atcvr0eq 35235 cdlemg31c 36509 jm2.19 38086 jm2.26lem3 38094 dgraa0p 38245 |
Copyright terms: Public domain | W3C validator |