![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3i | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon3i.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
necon3i | ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3i.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
2 | 1 | necon3ai 2949 | . 2 ⊢ (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2931 | 1 ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1624 ≠ wne 2924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2925 |
This theorem is referenced by: difn0 4078 xpnz 5703 unixp 5821 inf3lem2 8691 infeq5 8699 cantnflem1 8751 iunfictbso 9119 rankcf 9783 hashfun 13408 hashge3el3dif 13452 s1nzOLD 13570 abssubne0 14247 expnprm 15800 grpn0 17647 pmtr3ncomlem2 18086 pgpfaclem2 18673 isdrng2 18951 mpfrcl 19712 ply1frcl 19877 gzrngunit 20006 zringunit 20030 prmirredlem 20035 uvcf1 20325 lindfrn 20354 dfac14lem 21614 flimclslem 21981 lebnumlem3 22955 pmltpclem2 23410 i1fmullem 23652 fta1glem1 24116 fta1blem 24119 dgrcolem1 24220 plydivlem4 24242 plyrem 24251 facth 24252 fta1lem 24253 vieta1lem1 24256 vieta1lem2 24257 vieta1 24258 aalioulem2 24279 geolim3 24285 logcj 24543 argregt0 24547 argimgt0 24549 argimlt0 24550 logneg2 24552 tanarg 24556 logtayl 24597 cxpsqrt 24640 cxpcn3lem 24679 cxpcn3 24680 dcubic2 24762 dcubic 24764 cubic 24767 asinlem 24786 atandmcj 24827 atancj 24828 atanlogsublem 24833 bndatandm 24847 birthdaylem1 24869 basellem4 25001 basellem5 25002 dchrn0 25166 lgsne0 25251 usgr2trlncl 26858 nmlno0lem 27949 nmlnop0iALT 29155 cntnevol 30592 signsvtn0 30948 signstfveq0a 30954 signstfveq0 30955 nepss 31898 elima4 31976 heicant 33749 totbndbnd 33893 cdleme3c 36012 cdleme7e 36029 imadisjlnd 38953 compne 39137 compneOLD 39138 stoweidlem39 40751 |
Copyright terms: Public domain | W3C validator |