![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bii | Structured version Visualization version GIF version |
Description: Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
Ref | Expression |
---|---|
necon3bii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) |
Ref | Expression |
---|---|
necon3bii | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bii.1 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) | |
2 | 1 | necon3abii 2869 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐷) |
3 | df-ne 2824 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
4 | 2, 3 | bitr4i 267 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 = wceq 1523 ≠ wne 2823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2824 |
This theorem is referenced by: necom 2876 neeq1i 2887 neeq2i 2888 neeq12i 2889 rnsnn0 5636 onoviun 7485 onnseq 7486 intrnfi 8363 wdomtr 8521 noinfep 8595 wemapwe 8632 scott0s 8789 cplem1 8790 karden 8796 acndom2 8915 dfac5lem3 8986 fin23lem31 9203 fin23lem40 9211 isf34lem5 9238 isf34lem7 9239 isf34lem6 9240 axrrecex 10022 negne0bi 10392 rpnnen1lem4 11855 rpnnen1lem5 11856 rpnnen1lem4OLD 11861 rpnnen1lem5OLD 11862 fseqsupcl 12816 limsupgre 14256 isercolllem3 14441 rpnnen2lem12 14998 ruclem11 15013 3dvds 15099 3dvdsOLD 15100 prmreclem6 15672 0ram 15771 0ram2 15772 0ramcl 15774 gsumval2 17327 ghmrn 17720 gexex 18302 gsumval3 18354 iinopn 20755 cnconn 21273 1stcfb 21296 qtopeu 21567 fbasrn 21735 alexsublem 21895 evth 22805 minveclem1 23241 minveclem3b 23245 ovollb2 23303 ovolunlem1a 23310 ovolunlem1 23311 ovoliunlem1 23316 ovoliun2 23320 ioombl1lem4 23375 uniioombllem1 23395 uniioombllem2 23397 uniioombllem6 23402 mbfsup 23476 mbfinf 23477 mbflimsup 23478 itg1climres 23526 itg2monolem1 23562 itg2mono 23565 itg2i1fseq2 23568 sincos4thpi 24310 axlowdimlem13 25879 eulerpath 27219 siii 27836 minvecolem1 27858 bcsiALT 28164 h1de2bi 28541 h1de2ctlem 28542 nmlnopgt0i 28984 rge0scvg 30123 erdszelem5 31303 cvmsss2 31382 elrn3 31778 nosepnelem 31955 rankeq1o 32403 fin2so 33526 heicant 33574 scottn0f 34108 fnwe2lem2 37938 wnefimgd 38777 |
Copyright terms: Public domain | W3C validator |