![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2827 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
3 | 1, 2 | syl5bi 232 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
4 | 3 | con1d 139 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ≠ wne 2823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2824 |
This theorem is referenced by: necon2ad 2838 nelne1 2919 nelne2 2920 nssne1 3694 nssne2 3695 disjne 4055 nbrne1 4704 nbrne2 4705 peano5 7131 oeeui 7727 domdifsn 8084 ac6sfi 8245 inf3lem2 8564 cnfcom3lem 8638 dfac9 8996 fin23lem21 9199 dedekindle 10239 zneo 11498 modirr 12781 sqrmo 14036 pc2dvds 15630 pcadd 15640 oddprmdvds 15654 4sqlem11 15706 latnlej 17115 sylow2blem3 18083 irredn0 18749 irredn1 18752 lssneln0 19000 lspsnne2 19166 lspfixed 19176 lspindpi 19180 lsmcv 19189 lspsolv 19191 isnzr2 19311 coe1tmmul 19695 dfac14 21469 fbdmn0 21685 filufint 21771 flimfnfcls 21879 alexsubALTlem2 21899 evth 22805 cphsqrtcl2 23032 ovolicc2lem4 23334 lhop1lem 23821 lhop1 23822 lhop2 23823 lhop 23824 deg1add 23908 abelthlem2 24231 logcnlem2 24434 angpined 24602 asinneg 24658 dmgmaddn0 24794 lgsne0 25105 lgsqr 25121 lgsquadlem2 25151 lgsquadlem3 25152 axlowdimlem17 25883 spansncvi 28639 broutsideof2 32354 unblimceq0lem 32622 poimirlem28 33567 dvasin 33626 dvacos 33627 nninfnub 33677 dvrunz 33883 lsatcvatlem 34654 lkrlsp2 34708 opnlen0 34793 2llnne2N 35012 lnnat 35031 llnn0 35120 lplnn0N 35151 lplnllnneN 35160 llncvrlpln2 35161 llncvrlpln 35162 lvoln0N 35195 lplncvrlvol2 35219 lplncvrlvol 35220 dalempnes 35255 dalemqnet 35256 dalemcea 35264 dalem3 35268 cdlema1N 35395 cdlemb 35398 paddasslem5 35428 llnexchb2lem 35472 osumcllem4N 35563 pexmidlem1N 35574 lhp2lt 35605 lhp2atne 35638 lhp2at0ne 35640 4atexlemunv 35670 4atexlemex2 35675 trlne 35790 trlval4 35793 cdlemc4 35799 cdleme11dN 35867 cdleme11h 35871 cdlemednuN 35905 cdleme20j 35923 cdleme20k 35924 cdleme21at 35933 cdleme35f 36059 cdlemg11b 36247 dia2dimlem1 36670 dihmeetlem3N 36911 dihmeetlem15N 36927 dochsnnz 37056 dochexmidlem1 37066 dochexmidlem7 37072 mapdindp3 37328 pellexlem1 37710 dfac21 37953 pm13.14 38927 uzlidlring 42254 suppdm 42625 |
Copyright terms: Public domain | W3C validator |