![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
2 | 1 | bicomi 214 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
3 | 2 | necon3abii 2869 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
4 | 3 | bicomi 214 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 = wceq 1523 ≠ wne 2823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2824 |
This theorem is referenced by: necon1abii 2871 nssinpss 3889 difsnpss 4370 xpdifid 5597 wfi 5751 ordintdif 5812 tfi 7095 oelim2 7720 0sdomg 8130 fin23lem26 9185 axdc3lem4 9313 axdc4lem 9315 axcclem 9317 crreczi 13029 ef0lem 14853 lidlnz 19276 nconnsubb 21274 ufileu 21770 itg2cnlem1 23573 plyeq0lem 24011 abelthlem2 24231 ppinprm 24923 chtnprm 24925 ltgov 25537 usgr2pthlem 26715 shne0i 28435 pjneli 28710 eleigvec 28944 nmo 29453 qqhval2lem 30153 qqhval2 30154 sibfof 30530 dffr5 31769 frpoind 31865 frind 31868 ellimits 32142 elicc3 32436 itg2addnclem2 33592 ftc1anclem3 33617 onfrALTlem5 39074 onfrALTlem5VD 39435 limcrecl 40179 |
Copyright terms: Public domain | W3C validator |