![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
2 | df-ne 2824 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | syl6ib 241 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
4 | 3 | con2d 129 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ≠ wne 2823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2824 |
This theorem is referenced by: necon4bd 2843 necon4d 2847 minel 4066 disjiun 4672 eceqoveq 7895 en3lp 8551 infpssrlem5 9167 nneo 11499 zeo2 11502 sqrt2irr 15023 bezoutr1 15329 coprm 15470 dfphi2 15526 pltirr 17010 oddvdsnn0 18009 psgnodpmr 19984 supnfcls 21871 flimfnfcls 21879 metds0 22700 metdseq0 22704 metnrmlem1a 22708 sineq0 24318 lgsqr 25121 staddi 29233 stadd3i 29235 eulerpartlems 30550 erdszelem8 31306 finminlem 32437 ordcmp 32571 poimirlem18 33557 poimirlem21 33560 cvrnrefN 34887 trlnidatb 35782 |
Copyright terms: Public domain | W3C validator |