![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2bbid | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
Ref | Expression |
---|---|
necon2bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon2bbid | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 304 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | necon2bbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) | |
3 | 1, 2 | syl5rbbr 275 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ ¬ 𝜓)) |
4 | 3 | necon4abid 2960 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1620 ≠ wne 2920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2921 |
This theorem is referenced by: necon4bid 2965 omwordi 7808 omass 7817 nnmwordi 7872 sdom1 8313 pceq0 15748 f1otrspeq 18038 pmtrfinv 18052 symggen 18061 psgnunilem1 18084 mdetralt 20587 mdetunilem7 20597 ftalem5 24973 fsumvma 25108 dchrelbas4 25138 fsumcvg4 30276 nosepssdm 32113 lkreqN 34929 |
Copyright terms: Public domain | W3C validator |