![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2933 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
3 | 1, 2 | syl5bir 233 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
4 | 3 | con1d 139 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1632 ≠ wne 2932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2933 |
This theorem is referenced by: necon4ad 2951 fvclss 6664 suppssr 7496 eceqoveq 8021 fofinf1o 8408 cantnfp1lem3 8752 cantnfp1 8753 mul0or 10879 inelr 11222 rimul 11223 rlimuni 14500 pc2dvds 15805 divsfval 16429 pleval2i 17185 lssvs0or 19332 lspsnat 19367 lmmo 21406 filssufilg 21936 hausflimi 22005 fclscf 22050 xrsmopn 22836 rectbntr0 22856 bcth3 23348 limcco 23876 ig1pdvds 24155 plyco0 24167 plypf1 24187 coeeulem 24199 coeidlem 24212 coeid3 24215 coemullem 24225 coemulhi 24229 coemulc 24230 dgradd2 24243 vieta1lem2 24285 dvtaylp 24343 musum 25137 perfectlem2 25175 dchrelbas3 25183 dchrmulid2 25197 dchreq 25203 dchrsum 25214 gausslemma2dlem4 25314 dchrisum0re 25422 coltr 25762 lmieu 25896 elspansn5 28763 atomli 29571 onsucconni 32763 poimirlem8 33748 poimirlem9 33749 poimirlem18 33758 poimirlem21 33761 poimirlem22 33762 poimirlem26 33766 lshpcmp 34796 lsator0sp 34809 atnle 35125 atlatmstc 35127 osumcllem8N 35770 osumcllem11N 35773 pexmidlem5N 35781 pexmidlem8N 35784 dochsat0 37266 dochexmidlem5 37273 dochexmidlem8 37276 congabseq 38061 perfectALTVlem2 42159 |
Copyright terms: Public domain | W3C validator |