![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2957 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
3 | 2 | notnotrd 128 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1632 ≠ wne 2932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2933 |
This theorem is referenced by: necon1i 2965 opnz 5090 inisegn0 5655 tz6.12i 6375 elfvdm 6381 fvfundmfvn0 6387 brfvopabrbr 6441 elfvmptrab1 6467 brovpreldm 7422 brovex 7517 brwitnlem 7756 cantnflem1 8759 carddomi2 8986 cdainf 9206 rankcf 9791 1re 10231 eliooxr 12425 iccssioo2 12439 elfzoel1 12662 elfzoel2 12663 ismnd 17498 lactghmga 18024 pmtrmvd 18076 mpfrcl 19720 fsubbas 21872 filuni 21890 ptcmplem2 22058 itg1climres 23680 mbfi1fseqlem4 23684 dvferm1lem 23946 dvferm2lem 23948 dvferm 23950 dvivthlem1 23970 coeeq2 24197 coe1termlem 24213 isppw 25039 dchrelbasd 25163 lgsne0 25259 wlkvv 26732 eldm3 31958 brfvimex 38826 brovmptimex 38827 clsneibex 38902 neicvgbex 38912 afvnufveq 41733 |
Copyright terms: Public domain | W3C validator |