![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version |
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
Ref | Expression |
---|---|
neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2824 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | df-ne 2824 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
3 | 1, 2 | anbi12i 733 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
4 | pm4.56 515 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
5 | 3, 4 | bitri 264 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ≠ wne 2823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ne 2824 |
This theorem is referenced by: nelpri 4234 nelprd 4236 eldifpr 4237 0nelop 4989 om00 7700 om00el 7701 oeoe 7724 mulne0b 10706 xmulpnf1 12142 lcmgcd 15367 lcmdvds 15368 drngmulne0 18817 lvecvsn0 19157 domnmuln0 19346 abvn0b 19350 mdetralt 20462 ply1domn 23928 vieta1lem1 24110 vieta1lem2 24111 atandm 24648 atandm3 24650 dchrelbas3 25008 eupth2lem3lem7 27212 frgrreg 27381 nmlno0lem 27776 nmlnop0iALT 28982 chirredi 29381 subfacp1lem1 31287 filnetlem4 32501 lcvbr3 34628 cvrnbtwn4 34884 elpadd0 35413 cdleme0moN 35830 cdleme0nex 35895 isdomn3 38099 lidldomnnring 42255 |
Copyright terms: Public domain | W3C validator |