![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ne0ii | Structured version Visualization version GIF version |
Description: If a set has elements, then it is not empty. Inference associated with ne0i 3954. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
ne0ii | ⊢ 𝐵 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | ne0i 3954 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ≠ wne 2823 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-v 3233 df-dif 3610 df-nul 3949 |
This theorem is referenced by: vn0 3957 prnz 4341 tpnz 4344 pwne0 4865 onn0 5827 oawordeulem 7679 noinfep 8595 fin23lem31 9203 isfin1-3 9246 omina 9551 rpnnen1lem4 11855 rpnnen1lem5 11856 rpnnen1lem4OLD 11861 rpnnen1lem5OLD 11862 rexfiuz 14131 caurcvg 14451 caurcvg2 14452 caucvg 14453 infcvgaux1i 14633 divalglem2 15165 pc2dvds 15630 vdwmc2 15730 cnsubglem 19843 cnmsubglem 19857 pmatcollpw3 20637 zfbas 21747 nrginvrcn 22543 lebnumlem3 22809 caun0 23125 cnflduss 23198 cnfldcusp 23199 reust 23215 recusp 23216 nulmbl2 23350 itg2seq 23554 itg2monolem1 23562 c1lip1 23805 aannenlem2 24129 logbmpt 24571 tgcgr4 25471 shintcl 28317 chintcl 28319 nmoprepnf 28854 nmfnrepnf 28867 nmcexi 29013 snct 29619 esum0 30239 esumpcvgval 30268 bnj906 31126 bj-tagn0 33092 taupi 33299 ismblfin 33580 volsupnfl 33584 itg2addnclem 33591 ftc1anc 33623 incsequz 33674 isbnd3 33713 ssbnd 33717 corclrcl 38316 imo72b2lem0 38782 imo72b2lem2 38784 imo72b2lem1 38788 imo72b2 38792 amgm2d 38818 nnn0 39908 ren0 39939 ioodvbdlimc1 40466 ioodvbdlimc2 40468 stirlinglem13 40621 fourierdlem103 40744 fourierdlem104 40745 fouriersw 40766 hoicvr 41083 2zlidl 42259 |
Copyright terms: Public domain | W3C validator |