![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndxarg | Structured version Visualization version GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 16070. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 16067 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
2 | nnex 11232 | . . . . 5 ⊢ ℕ ∈ V | |
3 | resiexg 7253 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
5 | 1, 4 | eqeltri 2846 | . . 3 ⊢ ndx ∈ V |
6 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
7 | 5, 6 | strfvn 16086 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
8 | 1 | fveq1i 6334 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
9 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
10 | fvresi 6586 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
12 | 7, 8, 11 | 3eqtri 2797 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 Vcvv 3351 I cid 5157 ↾ cres 5252 ‘cfv 6030 ℕcn 11226 ndxcnx 16061 Slot cslot 16063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-i2m1 10210 ax-1ne0 10211 ax-rrecex 10214 ax-cnre 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-om 7217 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-nn 11227 df-ndx 16067 df-slot 16068 |
This theorem is referenced by: ndxid 16090 ndxidOLD 16091 basendx 16130 basendxnn 16131 resslem 16140 plusgndx 16184 2strstr 16191 2strstr1 16194 2strop1 16196 basendxnplusgndx 16197 mulrndx 16204 basendxnmulrndx 16207 starvndx 16212 scandx 16221 vscandx 16223 ipndx 16230 tsetndx 16248 plendx 16255 plendxOLD 16256 ocndx 16268 dsndx 16270 unifndx 16272 homndx 16282 ccondx 16284 slotsbhcdif 16288 oppglem 17987 mgplem 18702 opprlem 18836 rmodislmod 19141 sralem 19392 opsrbaslem 19692 opsrbaslemOLD 19693 zlmlem 20080 znbaslem 20101 znbaslemOLD 20102 tnglem 22664 itvndx 25560 lngndx 25561 ttglem 25977 cchhllem 25988 edgfndxnn 26091 baseltedgf 26093 resvlem 30171 hlhilslem 37748 |
Copyright terms: Public domain | W3C validator |