MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndvdssub Structured version   Visualization version   GIF version

Theorem ndvdssub 15180
Description: Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdssub ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))

Proof of Theorem ndvdssub
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11337 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
2 nnne0 11091 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
31, 2jca 553 . . . . . . 7 (𝐾 ∈ ℕ → (𝐾 ∈ ℕ0𝐾 ≠ 0))
4 df-ne 2824 . . . . . . . . . . . 12 (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0)
54anbi2i 730 . . . . . . . . . . 11 ((𝐾 < 𝐷𝐾 ≠ 0) ↔ (𝐾 < 𝐷 ∧ ¬ 𝐾 = 0))
6 divalg2 15175 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)))
7 breq1 4688 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑥 → (𝑟 < 𝐷𝑥 < 𝐷))
8 oveq2 6698 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
98breq2d 4697 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
107, 9anbi12d 747 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑥 → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))))
1110reu4 3433 . . . . . . . . . . . . . . . . . . 19 (∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (∃𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥)))
126, 11sylib 208 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (∃𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥)))
13 nngt0 11087 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐷 ∈ ℕ → 0 < 𝐷)
14133ad2ant2 1103 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → 0 < 𝐷)
15 zcn 11420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615subid1d 10419 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
1716breq2d 4697 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → (𝐷 ∥ (𝑁 − 0) ↔ 𝐷𝑁))
1817biimpar 501 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ 𝐷𝑁) → 𝐷 ∥ (𝑁 − 0))
19183adant2 1100 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → 𝐷 ∥ (𝑁 − 0))
2014, 19jca 553 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (0 < 𝐷𝐷 ∥ (𝑁 − 0)))
21203expa 1284 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → (0 < 𝐷𝐷 ∥ (𝑁 − 0)))
2221anim2i 592 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁)) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
2322ancoms 468 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) ∧ (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟))) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
24 0nn0 11345 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℕ0
25 breq1 4688 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝑥 < 𝐷 ↔ 0 < 𝐷))
26 oveq2 6698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 0 → (𝑁𝑥) = (𝑁 − 0))
2726breq2d 4697 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁 − 0)))
2825, 27anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → ((𝑥 < 𝐷𝐷 ∥ (𝑁𝑥)) ↔ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
2928anbi2d 740 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) ↔ ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0)))))
30 eqeq2 2662 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (𝑟 = 𝑥𝑟 = 0))
3129, 30imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → ((((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) ↔ (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0)))
3231rspcv 3336 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0)))
3324, 32ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0))
3423, 33syl5 34 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) ∧ (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟))) → 𝑟 = 0))
3534expd 451 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3635ralimi 2981 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → ∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3712, 36simpl2im 657 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
38 r19.21v 2989 . . . . . . . . . . . . . . . . 17 (∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)) ↔ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3937, 38sylib 208 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
4039expd 451 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0))))
4140pm2.43i 52 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
42413impia 1280 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0))
43 breq1 4688 . . . . . . . . . . . . . . . 16 (𝑟 = 𝐾 → (𝑟 < 𝐷𝐾 < 𝐷))
44 oveq2 6698 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝐾 → (𝑁𝑟) = (𝑁𝐾))
4544breq2d 4697 . . . . . . . . . . . . . . . 16 (𝑟 = 𝐾 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝐾)))
4643, 45anbi12d 747 . . . . . . . . . . . . . . 15 (𝑟 = 𝐾 → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (𝐾 < 𝐷𝐷 ∥ (𝑁𝐾))))
47 eqeq1 2655 . . . . . . . . . . . . . . 15 (𝑟 = 𝐾 → (𝑟 = 0 ↔ 𝐾 = 0))
4846, 47imbi12d 333 . . . . . . . . . . . . . 14 (𝑟 = 𝐾 → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0) ↔ ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
4948rspcv 3336 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0) → ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
5042, 49syl5com 31 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
51 pm4.14 601 . . . . . . . . . . . 12 (((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0) ↔ ((𝐾 < 𝐷 ∧ ¬ 𝐾 = 0) → ¬ 𝐷 ∥ (𝑁𝐾)))
5250, 51syl6ib 241 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷 ∧ ¬ 𝐾 = 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
535, 52syl7bi 245 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷𝐾 ≠ 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
5453exp4a 632 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → (𝐾 < 𝐷 → (𝐾 ≠ 0 → ¬ 𝐷 ∥ (𝑁𝐾)))))
5554com23 86 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → (𝐾 ∈ ℕ0 → (𝐾 ≠ 0 → ¬ 𝐷 ∥ (𝑁𝐾)))))
5655imp4a 613 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → ((𝐾 ∈ ℕ0𝐾 ≠ 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
573, 56syl7 74 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → (𝐾 ∈ ℕ → ¬ 𝐷 ∥ (𝑁𝐾))))
5857com23 86 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ → (𝐾 < 𝐷 → ¬ 𝐷 ∥ (𝑁𝐾))))
5958impd 446 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → ¬ 𝐷 ∥ (𝑁𝐾)))
60593expia 1286 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → ¬ 𝐷 ∥ (𝑁𝐾))))
6160com23 86 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾))))
62613impia 1280 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  ∃!wreu 2943   class class class wbr 4685  (class class class)co 6690  0cc0 9974   < clt 10112  cmin 10304  cn 11058  0cn0 11330  cz 11415  cdvds 15027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028
This theorem is referenced by:  ndvdsadd  15181
  Copyright terms: Public domain W3C validator