MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovord Structured version   Visualization version   GIF version

Theorem ndmovord 6866
Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovord.4 𝑅 ⊆ (𝑆 × 𝑆)
ndmovord.5 ¬ ∅ ∈ 𝑆
ndmovord.6 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Assertion
Ref Expression
ndmovord (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))

Proof of Theorem ndmovord
StepHypRef Expression
1 ndmovord.6 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
213expia 1286 . 2 ((𝐴𝑆𝐵𝑆) → (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
3 ndmovord.4 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
43brel 5202 . . . 4 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
53brel 5202 . . . . 5 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆))
6 ndmov.1 . . . . . . . 8 dom 𝐹 = (𝑆 × 𝑆)
7 ndmovord.5 . . . . . . . 8 ¬ ∅ ∈ 𝑆
86, 7ndmovrcl 6862 . . . . . . 7 ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶𝑆𝐴𝑆))
98simprd 478 . . . . . 6 ((𝐶𝐹𝐴) ∈ 𝑆𝐴𝑆)
106, 7ndmovrcl 6862 . . . . . . 7 ((𝐶𝐹𝐵) ∈ 𝑆 → (𝐶𝑆𝐵𝑆))
1110simprd 478 . . . . . 6 ((𝐶𝐹𝐵) ∈ 𝑆𝐵𝑆)
129, 11anim12i 589 . . . . 5 (((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆) → (𝐴𝑆𝐵𝑆))
135, 12syl 17 . . . 4 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐴𝑆𝐵𝑆))
144, 13pm5.21ni 366 . . 3 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
1514a1d 25 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
162, 15pm2.61i 176 1 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wss 3607  c0 3948   class class class wbr 4685   × cxp 5141  dom cdm 5143  (class class class)co 6690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-xp 5149  df-dm 5153  df-iota 5889  df-fv 5934  df-ov 6693
This theorem is referenced by:  ltapi  9763  ltmpi  9764  ltanq  9831  ltmnq  9832  ltapr  9905  ltasr  9959
  Copyright terms: Public domain W3C validator