![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmovg | Structured version Visualization version GIF version |
Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008.) |
Ref | Expression |
---|---|
ndmovg | ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6818 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | eleq2 2829 | . . . . . 6 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆))) | |
3 | opelxp 5304 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) | |
4 | 2, 3 | syl6bb 276 | . . . . 5 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆))) |
5 | 4 | notbid 307 | . . . 4 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 ↔ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆))) |
6 | ndmfv 6381 | . . . 4 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
7 | 5, 6 | syl6bir 244 | . . 3 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐹‘〈𝐴, 𝐵〉) = ∅)) |
8 | 7 | imp 444 | . 2 ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
9 | 1, 8 | syl5eq 2807 | 1 ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∅c0 4059 〈cop 4328 × cxp 5265 dom cdm 5267 ‘cfv 6050 (class class class)co 6815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-xp 5273 df-dm 5277 df-iota 6013 df-fv 6058 df-ov 6818 |
This theorem is referenced by: ndmov 6985 curry1val 7440 curry2val 7444 1div0 10899 repsundef 13739 cshnz 13759 mamufacex 20418 mavmulsolcl 20580 mavmul0g 20582 iscau2 23296 1div0apr 27657 |
Copyright terms: Public domain | W3C validator |