![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovcl | Structured version Visualization version GIF version |
Description: The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl 6986 where it is required that the domain contains the empty set (∅ ∈ 𝑆). (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
ndmaov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
ndmaovcl.2 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) |
ndmaovcl.3 | ⊢ ((𝐴𝐹𝐵)) ∈ V |
Ref | Expression |
---|---|
ndmaovcl | ⊢ ((𝐴𝐹𝐵)) ∈ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmaovcl.2 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) | |
2 | opelxp 5304 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | |
3 | ndmaov.1 | . . . . . 6 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
4 | 3 | eqcomi 2770 | . . . . 5 ⊢ (𝑆 × 𝑆) = dom 𝐹 |
5 | 4 | eleq2i 2832 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
6 | ndmaovcl.3 | . . . . 5 ⊢ ((𝐴𝐹𝐵)) ∈ V | |
7 | ndmaov 41788 | . . . . 5 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V) | |
8 | eleq1 2828 | . . . . . . 7 ⊢ ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V ↔ V ∈ V)) | |
9 | 8 | biimpd 219 | . . . . . 6 ⊢ ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V → V ∈ V)) |
10 | vprc 4949 | . . . . . . 7 ⊢ ¬ V ∈ V | |
11 | 10 | pm2.21i 116 | . . . . . 6 ⊢ (V ∈ V → ((𝐴𝐹𝐵)) ∈ 𝑆) |
12 | 9, 11 | syl6com 37 | . . . . 5 ⊢ ( ((𝐴𝐹𝐵)) ∈ V → ( ((𝐴𝐹𝐵)) = V → ((𝐴𝐹𝐵)) ∈ 𝑆)) |
13 | 6, 7, 12 | mpsyl 68 | . . . 4 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → ((𝐴𝐹𝐵)) ∈ 𝑆) |
14 | 5, 13 | sylnbi 319 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) |
15 | 2, 14 | sylnbir 320 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) |
16 | 1, 15 | pm2.61i 176 | 1 ⊢ ((𝐴𝐹𝐵)) ∈ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 Vcvv 3341 〈cop 4328 × cxp 5265 dom cdm 5267 ((caov 41720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-opab 4866 df-xp 5273 df-fv 6058 df-dfat 41721 df-afv 41722 df-aov 41723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |