![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmafv | Structured version Visualization version GIF version |
Description: The value of a class outside its domain is the universe, compare with ndmfv 6256. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
ndmafv | ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dfat 41517 | . . . 4 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
2 | 1 | simplbi 475 | . . 3 ⊢ (𝐹 defAt 𝐴 → 𝐴 ∈ dom 𝐹) |
3 | 2 | con3i 150 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ¬ 𝐹 defAt 𝐴) |
4 | afvnfundmuv 41540 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V) | |
5 | 3, 4 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 {csn 4210 dom cdm 5143 ↾ cres 5145 Fun wfun 5920 defAt wdfat 41514 '''cafv 41515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-un 3612 df-if 4120 df-fv 5934 df-dfat 41517 df-afv 41518 |
This theorem is referenced by: afvvdm 41542 afvprc 41545 afvco2 41577 ndmaov 41584 aovprc 41589 |
Copyright terms: Public domain | W3C validator |