![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nd3 | Structured version Visualization version GIF version |
Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
nd3 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv 8542 | . . . 4 ⊢ ¬ 𝑥 ∈ 𝑥 | |
2 | elequ2 2044 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑥 ∈ 𝑦)) | |
3 | 1, 2 | mtbii 315 | . . 3 ⊢ (𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
4 | 3 | sps 2093 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
5 | sp 2091 | . 2 ⊢ (∀𝑧 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑦) | |
6 | 4, 5 | nsyl 135 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-reg 8538 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-dif 3610 df-un 3612 df-nul 3949 df-sn 4211 df-pr 4213 |
This theorem is referenced by: nd4 9450 axrepnd 9454 axpowndlem3 9459 axinfnd 9466 axacndlem3 9469 axacnd 9472 |
Copyright terms: Public domain | W3C validator |