![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nd1 | Structured version Visualization version GIF version |
Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 1-Jan-2002.) |
Ref | Expression |
---|---|
nd1 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv 8542 | . . 3 ⊢ ¬ 𝑧 ∈ 𝑧 | |
2 | stdpc4 2381 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑧 → [𝑧 / 𝑦]𝑦 ∈ 𝑧) | |
3 | 1 | nfnth 1768 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝑧 |
4 | elequ1 2037 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧)) | |
5 | 3, 4 | sbie 2436 | . . . 4 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧) |
6 | 2, 5 | sylib 208 | . . 3 ⊢ (∀𝑦 𝑦 ∈ 𝑧 → 𝑧 ∈ 𝑧) |
7 | 1, 6 | mto 188 | . 2 ⊢ ¬ ∀𝑦 𝑦 ∈ 𝑧 |
8 | axc11 2347 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦 ∈ 𝑧 → ∀𝑦 𝑦 ∈ 𝑧)) | |
9 | 7, 8 | mtoi 190 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1521 [wsb 1937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-reg 8538 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-dif 3610 df-un 3612 df-nul 3949 df-sn 4211 df-pr 4213 |
This theorem is referenced by: axrepnd 9454 axinfndlem1 9465 axinfnd 9466 axacndlem1 9467 axacndlem2 9468 |
Copyright terms: Public domain | W3C validator |