![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncvspds | Structured version Visualization version GIF version |
Description: Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 13-Oct-2021.) |
Ref | Expression |
---|---|
ncvspds.n | ⊢ 𝑁 = (norm‘𝐺) |
ncvspds.x | ⊢ 𝑋 = (Base‘𝐺) |
ncvspds.p | ⊢ + = (+g‘𝐺) |
ncvspds.d | ⊢ 𝐷 = (dist‘𝐺) |
ncvspds.s | ⊢ · = ( ·𝑠 ‘𝐺) |
Ref | Expression |
---|---|
ncvspds | ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3931 | . . . 4 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) ↔ (𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec)) | |
2 | nvcnlm 22693 | . . . . . 6 ⊢ (𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod) | |
3 | nlmngp 22674 | . . . . . 6 ⊢ (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp) |
5 | 4 | adantr 472 | . . . 4 ⊢ ((𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec) → 𝐺 ∈ NrmGrp) |
6 | 1, 5 | sylbi 207 | . . 3 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ NrmGrp) |
7 | ncvspds.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
8 | ncvspds.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
9 | eqid 2752 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
10 | ncvspds.d | . . . 4 ⊢ 𝐷 = (dist‘𝐺) | |
11 | 7, 8, 9, 10 | ngpds 22601 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝐺)𝐵))) |
12 | 6, 11 | syl3an1 1166 | . 2 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝐺)𝐵))) |
13 | id 22 | . . . . . 6 ⊢ (𝐺 ∈ ℂVec → 𝐺 ∈ ℂVec) | |
14 | 13 | cvsclm 23118 | . . . . 5 ⊢ (𝐺 ∈ ℂVec → 𝐺 ∈ ℂMod) |
15 | 1, 14 | simplbiim 661 | . . . 4 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ ℂMod) |
16 | ncvspds.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
17 | eqid 2752 | . . . . 5 ⊢ (Scalar‘𝐺) = (Scalar‘𝐺) | |
18 | ncvspds.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐺) | |
19 | 8, 16, 9, 17, 18 | clmvsubval 23101 | . . . 4 ⊢ ((𝐺 ∈ ℂMod ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(-g‘𝐺)𝐵) = (𝐴 + (-1 · 𝐵))) |
20 | 15, 19 | syl3an1 1166 | . . 3 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(-g‘𝐺)𝐵) = (𝐴 + (-1 · 𝐵))) |
21 | 20 | fveq2d 6348 | . 2 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴(-g‘𝐺)𝐵)) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
22 | 12, 21 | eqtrd 2786 | 1 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ∩ cin 3706 ‘cfv 6041 (class class class)co 6805 1c1 10121 -cneg 10451 Basecbs 16051 +gcplusg 16135 Scalarcsca 16138 ·𝑠 cvsca 16139 distcds 16144 -gcsg 17617 normcnm 22574 NrmGrpcngp 22575 NrmModcnlm 22578 NrmVeccnvc 22579 ℂModcclm 23054 ℂVecccvs 23115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 ax-addf 10199 ax-mulf 10200 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8505 df-inf 8506 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-z 11562 df-dec 11678 df-uz 11872 df-q 11974 df-rp 12018 df-xneg 12131 df-xadd 12132 df-xmul 12133 df-fz 12512 df-struct 16053 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-mulr 16149 df-starv 16150 df-tset 16154 df-ple 16155 df-ds 16158 df-unif 16159 df-0g 16296 df-topgen 16298 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-grp 17618 df-minusg 17619 df-sbg 17620 df-subg 17784 df-cmn 18387 df-mgp 18682 df-ur 18694 df-ring 18741 df-cring 18742 df-subrg 18972 df-lmod 19059 df-psmet 19932 df-xmet 19933 df-met 19934 df-bl 19935 df-mopn 19936 df-cnfld 19941 df-top 20893 df-topon 20910 df-topsp 20931 df-bases 20944 df-xms 22318 df-ms 22319 df-nm 22580 df-ngp 22581 df-nlm 22584 df-nvc 22585 df-clm 23055 df-cvs 23116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |