MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvs1 Structured version   Visualization version   GIF version

Theorem ncvs1 23153
Description: From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvs1.x 𝑋 = (Base‘𝐺)
ncvs1.n 𝑁 = (norm‘𝐺)
ncvs1.z 0 = (0g𝐺)
ncvs1.s · = ( ·𝑠𝐺)
ncvs1.f 𝐹 = (Scalar‘𝐺)
ncvs1.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ncvs1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = 1)

Proof of Theorem ncvs1
StepHypRef Expression
1 simp1 1131 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 𝐺 ∈ (NrmVec ∩ ℂVec))
2 simp3 1133 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ 𝐾)
3 elin 3935 . . . . . . . . 9 (𝐺 ∈ (NrmVec ∩ ℂVec) ↔ (𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec))
4 nvcnlm 22697 . . . . . . . . . . 11 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod)
5 nlmngp 22678 . . . . . . . . . . 11 (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp)
64, 5syl 17 . . . . . . . . . 10 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp)
76adantr 472 . . . . . . . . 9 ((𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec) → 𝐺 ∈ NrmGrp)
83, 7sylbi 207 . . . . . . . 8 (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ NrmGrp)
9 simpl 474 . . . . . . . 8 ((𝐴𝑋𝐴0 ) → 𝐴𝑋)
108, 9anim12i 591 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝐺 ∈ NrmGrp ∧ 𝐴𝑋))
11 ncvs1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
12 ncvs1.n . . . . . . . 8 𝑁 = (norm‘𝐺)
1311, 12nmcl 22617 . . . . . . 7 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1410, 13syl 17 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝑁𝐴) ∈ ℝ)
15 ncvs1.z . . . . . . . . . . . 12 0 = (0g𝐺)
1611, 12, 15nmeq0 22619 . . . . . . . . . . 11 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 0 ))
1716bicomd 213 . . . . . . . . . 10 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴 = 0 ↔ (𝑁𝐴) = 0))
188, 17sylan 489 . . . . . . . . 9 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴 = 0 ↔ (𝑁𝐴) = 0))
1918necon3bid 2972 . . . . . . . 8 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴0 ↔ (𝑁𝐴) ≠ 0))
2019biimpd 219 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴0 → (𝑁𝐴) ≠ 0))
2120impr 650 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝑁𝐴) ≠ 0)
2214, 21rereccld 11040 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (1 / (𝑁𝐴)) ∈ ℝ)
23223adant3 1127 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ ℝ)
242, 23elind 3937 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ (𝐾 ∩ ℝ))
25 1re 10227 . . . . . . . 8 1 ∈ ℝ
26 0le1 10739 . . . . . . . 8 0 ≤ 1
2725, 26pm3.2i 470 . . . . . . 7 (1 ∈ ℝ ∧ 0 ≤ 1)
2827a1i 11 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (1 ∈ ℝ ∧ 0 ≤ 1))
29 simprr 813 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → 𝐴0 )
3011, 12, 15nmgt0 22631 . . . . . . . 8 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴0 ↔ 0 < (𝑁𝐴)))
3110, 30syl 17 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝐴0 ↔ 0 < (𝑁𝐴)))
3229, 31mpbid 222 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → 0 < (𝑁𝐴))
3328, 14, 32jca32 559 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))))
34333adant3 1127 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))))
35 divge0 11080 . . . 4 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))) → 0 ≤ (1 / (𝑁𝐴)))
3634, 35syl 17 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 0 ≤ (1 / (𝑁𝐴)))
37 simp2l 1242 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 𝐴𝑋)
38 ncvs1.s . . . 4 · = ( ·𝑠𝐺)
39 ncvs1.f . . . 4 𝐹 = (Scalar‘𝐺)
40 ncvs1.k . . . 4 𝐾 = (Base‘𝐹)
4111, 12, 38, 39, 40ncvsge0 23149 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ ((1 / (𝑁𝐴)) ∈ (𝐾 ∩ ℝ) ∧ 0 ≤ (1 / (𝑁𝐴))) ∧ 𝐴𝑋) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
421, 24, 36, 37, 41syl121anc 1482 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
43103adant3 1127 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝐺 ∈ NrmGrp ∧ 𝐴𝑋))
4443, 13syl 17 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ∈ ℝ)
4544recnd 10256 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ∈ ℂ)
46213adant3 1127 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ≠ 0)
4745, 46recid2d 10985 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → ((1 / (𝑁𝐴)) · (𝑁𝐴)) = 1)
4842, 47eqtrd 2790 1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1628  wcel 2135  wne 2928  cin 3710   class class class wbr 4800  cfv 6045  (class class class)co 6809  cr 10123  0cc0 10124  1c1 10125   · cmul 10129   < clt 10262  cle 10263   / cdiv 10872  Basecbs 16055  Scalarcsca 16142   ·𝑠 cvsca 16143  0gc0g 16298  normcnm 22578  NrmGrpcngp 22579  NrmModcnlm 22582  NrmVeccnvc 22583  ℂVecccvs 23119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202  ax-addf 10203  ax-mulf 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-map 8021  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-inf 8510  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-5 11270  df-6 11271  df-7 11272  df-8 11273  df-9 11274  df-n0 11481  df-z 11566  df-dec 11682  df-uz 11876  df-q 11978  df-rp 12022  df-xneg 12135  df-xadd 12136  df-xmul 12137  df-fz 12516  df-seq 12992  df-exp 13051  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-struct 16057  df-ndx 16058  df-slot 16059  df-base 16061  df-sets 16062  df-ress 16063  df-plusg 16152  df-mulr 16153  df-starv 16154  df-tset 16158  df-ple 16159  df-ds 16162  df-unif 16163  df-0g 16300  df-topgen 16302  df-mgm 17439  df-sgrp 17481  df-mnd 17492  df-grp 17622  df-subg 17788  df-cmn 18391  df-mgp 18686  df-ring 18745  df-cring 18746  df-subrg 18976  df-psmet 19936  df-xmet 19937  df-met 19938  df-bl 19939  df-mopn 19940  df-cnfld 19945  df-top 20897  df-topon 20914  df-topsp 20935  df-bases 20948  df-xms 22322  df-ms 22323  df-nm 22584  df-ngp 22585  df-nlm 22588  df-nvc 22589  df-clm 23059  df-cvs 23120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator