Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ncvr1 Structured version   Visualization version   GIF version

Theorem ncvr1 34385
Description: No element covers the lattice unit. (Contributed by NM, 8-Jul-2013.)
Hypotheses
Ref Expression
ncvr1.b 𝐵 = (Base‘𝐾)
ncvr1.u 1 = (1.‘𝐾)
ncvr1.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
ncvr1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ¬ 1 𝐶𝑋)

Proof of Theorem ncvr1
StepHypRef Expression
1 ncvr1.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2621 . . . 4 (le‘𝐾) = (le‘𝐾)
3 ncvr1.u . . . 4 1 = (1.‘𝐾)
41, 2, 3ople1 34304 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋(le‘𝐾) 1 )
5 opposet 34294 . . . . . 6 (𝐾 ∈ OP → 𝐾 ∈ Poset)
65ad2antrr 762 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝐾 ∈ Poset)
71, 3op1cl 34298 . . . . . 6 (𝐾 ∈ OP → 1𝐵)
87ad2antrr 762 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1𝐵)
9 simplr 792 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 𝑋𝐵)
10 simpr 477 . . . . 5 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → 1 (lt‘𝐾)𝑋)
11 eqid 2621 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
121, 2, 11pltnle 16960 . . . . 5 (((𝐾 ∈ Poset ∧ 1𝐵𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 )
136, 8, 9, 10, 12syl31anc 1328 . . . 4 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 (lt‘𝐾)𝑋) → ¬ 𝑋(le‘𝐾) 1 )
1413ex 450 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 1 (lt‘𝐾)𝑋 → ¬ 𝑋(le‘𝐾) 1 ))
154, 14mt2d 131 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ¬ 1 (lt‘𝐾)𝑋)
16 simpll 790 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 𝐾 ∈ OP)
177ad2antrr 762 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 1𝐵)
18 simplr 792 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 𝑋𝐵)
19 simpr 477 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 1 𝐶𝑋)
20 ncvr1.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
211, 11, 20cvrlt 34383 . . 3 (((𝐾 ∈ OP ∧ 1𝐵𝑋𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋)
2216, 17, 18, 19, 21syl31anc 1328 . 2 (((𝐾 ∈ OP ∧ 𝑋𝐵) ∧ 1 𝐶𝑋) → 1 (lt‘𝐾)𝑋)
2315, 22mtand 691 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ¬ 1 𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1482  wcel 1989   class class class wbr 4651  cfv 5886  Basecbs 15851  lecple 15942  Posetcpo 16934  ltcplt 16935  1.cp1 17032  OPcops 34285  ccvr 34375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-preset 16922  df-poset 16940  df-plt 16952  df-lub 16968  df-p1 17034  df-oposet 34289  df-covers 34379
This theorem is referenced by:  lhp2lt  35113
  Copyright terms: Public domain W3C validator