MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolrot2 Structured version   Visualization version   GIF version

Theorem ncolrot2 25503
Description: Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
ncolrot (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Assertion
Ref Expression
ncolrot2 (𝜑 → ¬ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))

Proof of Theorem ncolrot2
StepHypRef Expression
1 ncolrot . 2 (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2 tglngval.p . . 3 𝑃 = (Base‘𝐺)
3 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
4 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
5 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
65adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝐺 ∈ TarskiG)
7 tgcolg.z . . . 4 (𝜑𝑍𝑃)
87adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑍𝑃)
9 tglngval.x . . . 4 (𝜑𝑋𝑃)
109adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑋𝑃)
11 tglngval.y . . . 4 (𝜑𝑌𝑃)
1211adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑌𝑃)
13 simpr 476 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
142, 3, 4, 6, 8, 10, 12, 13colrot1 25499 . 2 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
151, 14mtand 692 1 (𝜑 → ¬ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  Basecbs 15904  TarskiGcstrkg 25374  Itvcitv 25380  LineGclng 25381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-trkgc 25392  df-trkgb 25393  df-trkgcb 25394  df-trkg 25397
This theorem is referenced by:  midexlem  25632  perpneq  25654  opphllem  25672  outpasch  25692  hlpasch  25693  trgcopy  25741  acopyeu  25770
  Copyright terms: Public domain W3C validator