![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncolcom | Structured version Visualization version GIF version |
Description: Swapping non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
ncolrot | ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Ref | Expression |
---|---|
ncolcom | ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncolrot | . 2 ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
2 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglngval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝐺 ∈ TarskiG) |
7 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑌 ∈ 𝑃) |
9 | tglngval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑋 ∈ 𝑃) |
11 | tgcolg.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑍 ∈ 𝑃) |
13 | simpr 476 | . . 3 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) | |
14 | 2, 3, 4, 6, 8, 10, 12, 13 | colcom 25498 | . 2 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
15 | 1, 14 | mtand 692 | 1 ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 TarskiGcstrkg 25374 Itvcitv 25380 LineGclng 25381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-trkgc 25392 df-trkgb 25393 df-trkgcb 25394 df-trkg 25397 |
This theorem is referenced by: ncolne2 25566 symquadlem 25629 midexlem 25632 outpasch 25692 acopyeu 25770 cgrg3col4 25779 tgasa1 25784 |
Copyright terms: Public domain | W3C validator |