Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgrvtxm1uvtx Structured version   Visualization version   GIF version

Theorem nbusgrvtxm1uvtx 26535
 Description: If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, the vertex is universal. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypothesis
Ref Expression
uvtxnm1nbgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbusgrvtxm1uvtx ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑈 ∈ (UnivVtx‘𝐺)))

Proof of Theorem nbusgrvtxm1uvtx
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 uvtxnm1nbgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
21nbgrssovtx 26480 . . . . . 6 (𝐺 NeighbVtx 𝑈) ⊆ (𝑉 ∖ {𝑈})
32sseli 3748 . . . . 5 (𝑣 ∈ (𝐺 NeighbVtx 𝑈) → 𝑣 ∈ (𝑉 ∖ {𝑈}))
4 eldifsn 4454 . . . . . 6 (𝑣 ∈ (𝑉 ∖ {𝑈}) ↔ (𝑣𝑉𝑣𝑈))
51nbusgrvtxm1 26504 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑣𝑉𝑣𝑈) → 𝑣 ∈ (𝐺 NeighbVtx 𝑈))))
65imp 393 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → ((𝑣𝑉𝑣𝑈) → 𝑣 ∈ (𝐺 NeighbVtx 𝑈)))
74, 6syl5bi 232 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → (𝑣 ∈ (𝑉 ∖ {𝑈}) → 𝑣 ∈ (𝐺 NeighbVtx 𝑈)))
83, 7impbid2 216 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → (𝑣 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑣 ∈ (𝑉 ∖ {𝑈})))
98eqrdv 2769 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → (𝐺 NeighbVtx 𝑈) = (𝑉 ∖ {𝑈}))
101uvtxnbgrb 26531 . . . 4 (𝑈𝑉 → (𝑈 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑈) = (𝑉 ∖ {𝑈})))
1110ad2antlr 706 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → (𝑈 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑈) = (𝑉 ∖ {𝑈})))
129, 11mpbird 247 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → 𝑈 ∈ (UnivVtx‘𝐺))
1312ex 397 1 ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑈 ∈ (UnivVtx‘𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943   ∖ cdif 3720  {csn 4317  ‘cfv 6030  (class class class)co 6796  1c1 10143   − cmin 10472  ♯chash 13321  Vtxcvtx 26095  FinUSGraphcfusgr 26431   NeighbVtx cnbgr 26447  UnivVtxcuvtx 26510 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-xnn0 11571  df-z 11585  df-uz 11894  df-fz 12534  df-hash 13322  df-fusgr 26432  df-nbgr 26448  df-uvtx 26511 This theorem is referenced by:  uvtxnbvtxm1  26536
 Copyright terms: Public domain W3C validator