Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgrf1o1 Structured version   Visualization version   GIF version

Theorem nbusgrf1o1 26470
 Description: The set of neighbors of a vertex is isomorphic to the set of edges containing the vertex in a simple graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nbusgrf1o1.v 𝑉 = (Vtx‘𝐺)
nbusgrf1o1.e 𝐸 = (Edg‘𝐺)
nbusgrf1o1.n 𝑁 = (𝐺 NeighbVtx 𝑈)
nbusgrf1o1.i 𝐼 = {𝑒𝐸𝑈𝑒}
Assertion
Ref Expression
nbusgrf1o1 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ∃𝑓 𝑓:𝑁1-1-onto𝐼)
Distinct variable groups:   𝑒,𝐸   𝑈,𝑒   𝑒,𝐺   𝑒,𝐼   𝑒,𝑁   𝑒,𝑉   𝑓,𝐼   𝑓,𝑁   𝑈,𝑓
Allowed substitution hints:   𝐸(𝑓)   𝐺(𝑓)   𝑉(𝑓)

Proof of Theorem nbusgrf1o1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nbusgrf1o1.n . . . 4 𝑁 = (𝐺 NeighbVtx 𝑈)
2 ovex 6841 . . . 4 (𝐺 NeighbVtx 𝑈) ∈ V
31, 2eqeltri 2835 . . 3 𝑁 ∈ V
4 mptexg 6648 . . 3 (𝑁 ∈ V → (𝑛𝑁 ↦ {𝑈, 𝑛}) ∈ V)
53, 4mp1i 13 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛𝑁 ↦ {𝑈, 𝑛}) ∈ V)
6 nbusgrf1o1.v . . 3 𝑉 = (Vtx‘𝐺)
7 nbusgrf1o1.e . . 3 𝐸 = (Edg‘𝐺)
8 nbusgrf1o1.i . . 3 𝐼 = {𝑒𝐸𝑈𝑒}
9 eqid 2760 . . 3 (𝑛𝑁 ↦ {𝑈, 𝑛}) = (𝑛𝑁 ↦ {𝑈, 𝑛})
106, 7, 1, 8, 9nbusgrf1o0 26469 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛𝑁 ↦ {𝑈, 𝑛}):𝑁1-1-onto𝐼)
11 f1oeq1 6288 . . 3 (𝑓 = (𝑛𝑁 ↦ {𝑈, 𝑛}) → (𝑓:𝑁1-1-onto𝐼 ↔ (𝑛𝑁 ↦ {𝑈, 𝑛}):𝑁1-1-onto𝐼))
1211spcegv 3434 . 2 ((𝑛𝑁 ↦ {𝑈, 𝑛}) ∈ V → ((𝑛𝑁 ↦ {𝑈, 𝑛}):𝑁1-1-onto𝐼 → ∃𝑓 𝑓:𝑁1-1-onto𝐼))
135, 10, 12sylc 65 1 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ∃𝑓 𝑓:𝑁1-1-onto𝐼)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139  {crab 3054  Vcvv 3340  {cpr 4323   ↦ cmpt 4881  –1-1-onto→wf1o 6048  ‘cfv 6049  (class class class)co 6813  Vtxcvtx 26073  Edgcedg 26138  USGraphcusgr 26243   NeighbVtx cnbgr 26423 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-fz 12520  df-hash 13312  df-edg 26139  df-upgr 26176  df-umgr 26177  df-uspgr 26244  df-usgr 26245  df-nbgr 26424 This theorem is referenced by:  nbusgrf1o  26471
 Copyright terms: Public domain W3C validator