![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbusgrf1o1 | Structured version Visualization version GIF version |
Description: The set of neighbors of a vertex is isomorphic to the set of edges containing the vertex in a simple graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
Ref | Expression |
---|---|
nbusgrf1o1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbusgrf1o1.e | ⊢ 𝐸 = (Edg‘𝐺) |
nbusgrf1o1.n | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) |
nbusgrf1o1.i | ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} |
Ref | Expression |
---|---|
nbusgrf1o1 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∃𝑓 𝑓:𝑁–1-1-onto→𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbusgrf1o1.n | . . . 4 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) | |
2 | ovex 6841 | . . . 4 ⊢ (𝐺 NeighbVtx 𝑈) ∈ V | |
3 | 1, 2 | eqeltri 2835 | . . 3 ⊢ 𝑁 ∈ V |
4 | mptexg 6648 | . . 3 ⊢ (𝑁 ∈ V → (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) ∈ V) | |
5 | 3, 4 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) ∈ V) |
6 | nbusgrf1o1.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | nbusgrf1o1.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
8 | nbusgrf1o1.i | . . 3 ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} | |
9 | eqid 2760 | . . 3 ⊢ (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) = (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) | |
10 | 6, 7, 1, 8, 9 | nbusgrf1o0 26469 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}):𝑁–1-1-onto→𝐼) |
11 | f1oeq1 6288 | . . 3 ⊢ (𝑓 = (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) → (𝑓:𝑁–1-1-onto→𝐼 ↔ (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}):𝑁–1-1-onto→𝐼)) | |
12 | 11 | spcegv 3434 | . 2 ⊢ ((𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) ∈ V → ((𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}):𝑁–1-1-onto→𝐼 → ∃𝑓 𝑓:𝑁–1-1-onto→𝐼)) |
13 | 5, 10, 12 | sylc 65 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∃𝑓 𝑓:𝑁–1-1-onto→𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2139 {crab 3054 Vcvv 3340 {cpr 4323 ↦ cmpt 4881 –1-1-onto→wf1o 6048 ‘cfv 6049 (class class class)co 6813 Vtxcvtx 26073 Edgcedg 26138 USGraphcusgr 26243 NeighbVtx cnbgr 26423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-n0 11485 df-xnn0 11556 df-z 11570 df-uz 11880 df-fz 12520 df-hash 13312 df-edg 26139 df-upgr 26176 df-umgr 26177 df-uspgr 26244 df-usgr 26245 df-nbgr 26424 |
This theorem is referenced by: nbusgrf1o 26471 |
Copyright terms: Public domain | W3C validator |