Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgreledg Structured version   Visualization version   GIF version

Theorem nbusgreledg 26294
 Description: A class/vertex is a neighbor of another class/vertex in a simple graph iff the vertices are endpoints of an edge. (Contributed by Alexander van der Vekens, 11-Oct-2017.) (Revised by AV, 26-Oct-2020.)
Hypothesis
Ref Expression
nbusgreledg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbusgreledg (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ 𝐸))

Proof of Theorem nbusgreledg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 nbusgreledg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbusgr 26290 . . 3 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ (Vtx‘𝐺) ∣ {𝐾, 𝑛} ∈ 𝐸})
43eleq2d 2716 . 2 (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝑁 ∈ {𝑛 ∈ (Vtx‘𝐺) ∣ {𝐾, 𝑛} ∈ 𝐸}))
52, 1usgrpredgv 26134 . . . . . 6 ((𝐺 ∈ USGraph ∧ {𝐾, 𝑁} ∈ 𝐸) → (𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))
65simprd 478 . . . . 5 ((𝐺 ∈ USGraph ∧ {𝐾, 𝑁} ∈ 𝐸) → 𝑁 ∈ (Vtx‘𝐺))
76ex 449 . . . 4 (𝐺 ∈ USGraph → ({𝐾, 𝑁} ∈ 𝐸𝑁 ∈ (Vtx‘𝐺)))
87pm4.71rd 668 . . 3 (𝐺 ∈ USGraph → ({𝐾, 𝑁} ∈ 𝐸 ↔ (𝑁 ∈ (Vtx‘𝐺) ∧ {𝐾, 𝑁} ∈ 𝐸)))
9 prcom 4299 . . . . 5 {𝑁, 𝐾} = {𝐾, 𝑁}
109eleq1i 2721 . . . 4 ({𝑁, 𝐾} ∈ 𝐸 ↔ {𝐾, 𝑁} ∈ 𝐸)
1110a1i 11 . . 3 (𝐺 ∈ USGraph → ({𝑁, 𝐾} ∈ 𝐸 ↔ {𝐾, 𝑁} ∈ 𝐸))
12 preq2 4301 . . . . . 6 (𝑛 = 𝑁 → {𝐾, 𝑛} = {𝐾, 𝑁})
1312eleq1d 2715 . . . . 5 (𝑛 = 𝑁 → ({𝐾, 𝑛} ∈ 𝐸 ↔ {𝐾, 𝑁} ∈ 𝐸))
1413elrab 3396 . . . 4 (𝑁 ∈ {𝑛 ∈ (Vtx‘𝐺) ∣ {𝐾, 𝑛} ∈ 𝐸} ↔ (𝑁 ∈ (Vtx‘𝐺) ∧ {𝐾, 𝑁} ∈ 𝐸))
1514a1i 11 . . 3 (𝐺 ∈ USGraph → (𝑁 ∈ {𝑛 ∈ (Vtx‘𝐺) ∣ {𝐾, 𝑛} ∈ 𝐸} ↔ (𝑁 ∈ (Vtx‘𝐺) ∧ {𝐾, 𝑁} ∈ 𝐸)))
168, 11, 153bitr4rd 301 . 2 (𝐺 ∈ USGraph → (𝑁 ∈ {𝑛 ∈ (Vtx‘𝐺) ∣ {𝐾, 𝑛} ∈ 𝐸} ↔ {𝑁, 𝐾} ∈ 𝐸))
174, 16bitrd 268 1 (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {crab 2945  {cpr 4212  ‘cfv 5926  (class class class)co 6690  Vtxcvtx 25919  Edgcedg 25984  USGraphcusgr 26089   NeighbVtx cnbgr 26269 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-edg 25985  df-upgr 26022  df-umgr 26023  df-usgr 26091  df-nbgr 26270 This theorem is referenced by:  usgrnbcnvfv  26311  nbusgredgeu  26312  edgnbusgreu  26313  nbusgrf1o0  26315  nb3grprlem1  26326  uvtxusgr  26353  iscusgredg  26375  clwwlknlbonbgr1  27002  frgrnbnb  27273  frgrncvvdeqlem2  27280  frgrncvvdeqlem3  27281  frgrncvvdeqlem6  27284  frgrncvvdeqlem9  27287  frgrwopreglem4a  27290  fusgr2wsp2nb  27314  extwwlkfablem1OLD  27323  numclwlk1lem2foa  27344
 Copyright terms: Public domain W3C validator