MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbumgr Structured version   Visualization version   GIF version

Theorem nbumgr 26288
Description: The set of neighbors of an arbitrary class in a multigraph. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
nbuhgr.v 𝑉 = (Vtx‘𝐺)
nbuhgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbumgr (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉   𝑛,𝐸

Proof of Theorem nbumgr
StepHypRef Expression
1 nbuhgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbuhgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbumgrvtx 26287 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
43expcom 450 . 2 (𝑁𝑉 → (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}))
5 df-nel 2927 . . . . . 6 (𝑁𝑉 ↔ ¬ 𝑁𝑉)
61nbgrnvtx0 26277 . . . . . 6 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = ∅)
75, 6sylbir 225 . . . . 5 𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = ∅)
87adantr 480 . . . 4 ((¬ 𝑁𝑉𝐺 ∈ UMGraph) → (𝐺 NeighbVtx 𝑁) = ∅)
91, 2umgrpredgv 26080 . . . . . . . . . . . . 13 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑛} ∈ 𝐸) → (𝑁𝑉𝑛𝑉))
109simpld 474 . . . . . . . . . . . 12 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑛} ∈ 𝐸) → 𝑁𝑉)
1110ex 449 . . . . . . . . . . 11 (𝐺 ∈ UMGraph → ({𝑁, 𝑛} ∈ 𝐸𝑁𝑉))
1211adantl 481 . . . . . . . . . 10 ((𝑛𝑉𝐺 ∈ UMGraph) → ({𝑁, 𝑛} ∈ 𝐸𝑁𝑉))
1312con3d 148 . . . . . . . . 9 ((𝑛𝑉𝐺 ∈ UMGraph) → (¬ 𝑁𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸))
1413ex 449 . . . . . . . 8 (𝑛𝑉 → (𝐺 ∈ UMGraph → (¬ 𝑁𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸)))
1514com13 88 . . . . . . 7 𝑁𝑉 → (𝐺 ∈ UMGraph → (𝑛𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸)))
1615imp 444 . . . . . 6 ((¬ 𝑁𝑉𝐺 ∈ UMGraph) → (𝑛𝑉 → ¬ {𝑁, 𝑛} ∈ 𝐸))
1716ralrimiv 2994 . . . . 5 ((¬ 𝑁𝑉𝐺 ∈ UMGraph) → ∀𝑛𝑉 ¬ {𝑁, 𝑛} ∈ 𝐸)
18 rabeq0 3990 . . . . 5 ({𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} = ∅ ↔ ∀𝑛𝑉 ¬ {𝑁, 𝑛} ∈ 𝐸)
1917, 18sylibr 224 . . . 4 ((¬ 𝑁𝑉𝐺 ∈ UMGraph) → {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} = ∅)
208, 19eqtr4d 2688 . . 3 ((¬ 𝑁𝑉𝐺 ∈ UMGraph) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
2120ex 449 . 2 𝑁𝑉 → (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}))
224, 21pm2.61i 176 1 (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wnel 2926  wral 2941  {crab 2945  c0 3948  {cpr 4212  cfv 5926  (class class class)co 6690  Vtxcvtx 25919  Edgcedg 25984  UMGraphcumgr 26021   NeighbVtx cnbgr 26269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-edg 25985  df-upgr 26022  df-umgr 26023  df-nbgr 26270
This theorem is referenced by:  nbusgr  26290
  Copyright terms: Public domain W3C validator